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Introduction. Before you can cook you must collect your ingredients and light
the fire. That is my present business. And a prosaic business it is, even in the
kitchen of a master chef. Though my own modest establishment is listed in
none of the gourmet guides, it does present a few exotic dishes on its menu—
a spécialité de la maison or two—and, since we try to introduce a memorably
uncommon note even to our more standard fare, all takes careful—if necessarily
brisk—preparation.

I proceed in the presumption that my diners have already consumed the
contents of a good introductory text, such as (say) Griffiths’ Introduction to
Quantum Mechanics(), and have at least tasted such of the fruit presented
there that they have chosen to set aside. And that they are at least a passingly
acquainted with other standard sources—that they are familiar enough with
the differences in style and substance which distinguish Bohm from Schiff from
Mertzbacher . . . that they have been able to form some sense of which they
individually find most congenial.

My readers will understand that it would be futile to try to produce a
comprehensive compilation of the best to be found in those standard sources,
that in a brief series of lectures I must be highly selective, that the most I can
hope to accomplish is to cast useful light on a few topics recommended either
by their acknowledged high importance or typical neglect. And that my own
neglect of a topic should not be read as an indication that the topic is, in my
view, “unimportant;” it means simply that I did not have time to treat the
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topic in question, or that I found it to be a topic to which I had nothing fresh
to contribute.

I intent in this introductory chapter will more to pose issues than to indicate
how they might be resolved. And to assemble some of the tools we will need to
undertake work of the latter sort.

Representations of configuration & state in classical & quantum physics. I have
been reminded recently1 that, in the opinion of Aristotle (– b.c.), “To
be ignorant of motion is to be ignorant of Nature.” But that bald assertion
does not take us very far. Motion of what? And with respect to what?
“Theories of motion” and “theories of constitution” have been in interactive
dialog throughout the long history of Natural Philosophy, developments in each
serving to inspire progress in the other. Consider, for a moment, of the objects
real or imagined

• celestial bodies
• “atoms” of Democritus
• earth, moon & planets (but not sun or stars)
• terrestrial projectiles
• “vortices” of Descartes
• “monads” of Leibniz
• “point particles” of Newton
• undulatory sound and light
• gas molecules
• electromagnetic fields
• æther
• nuclear atom
• warped spacetime
• ψ -field of Schrödinger
• elementary particles
• quantum fields
• supersymmetric strings
• hyperdimensional M-branes

which have been discovered/invented/transformed/abandoned/reinvented in
the long history of physics, and of how various are the theories which have been
successively devised to launch those objects into motion. What those theories—
whether they involve celestial spheres or spin space, Riemannian geometry or
Teichmüller space—have all in common is that, from Pythagorus (c–c
b.c.: “Number rules the universe”) down to the present day, they have lived
not so much in the world of appearances as in the mathematical mind. Yet not
just in the mathematical mind: connected , by a train of associations however
long and tenuous, to the world of direct perception. The imagination of the
physicist is invited by the manifest complexity of Nature to spin, yet prevented
by that thread from spinning free. It is that connective thread, that anchor line
itself which at the moment interests me—that, and the variety of its attachment
points to classical/quantum mechanics.

1 Dava Sobel, Galileo’s Daughter (), p. 30.
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To describe the motion of that thing relative to this ground on which we
stand it is sufficient, in the simplest instance, and at the most naive level, simply
to point (though it would be difficult by such means to describe the motion of
the sea; easier to describe the motion of the gull). But such handwaving is not
yet physics.2

Erect scaffolding on a secure foundation: physical scaffolding, from boards,
screws and glue, with corners just and true, the whole in accordance with
your best understanding of the (locally) Euclidean geometry of physical space.
Construct also a clock, a physical device which ticks (in Newton’s phrase,
which would seem profoundly circular had he not held that he was referring
to something external and absolute) “uniformly,” and hang it on a scaffold peg,
to which you have previously attached also an orthogonal triad of regularly
ticked sticks. Equip yourself finally with an arrow, which—with its tail always
in contact with some selected fiducial point (origin of the triad)—you will use
to indicate the momentary position of the moving point-like object of interest.

You have, by such means, constructed a “digitized finger”—means and a
procedure for representing the momentary placement of a physical point by
a triple of real numbers, and the motion of such a point as a parameterized
sequence of such triples. The real numbers which issue from physical theories
become purported statements about the physical world through the agency
of measurement devices, and all such devices are elaborations—(theory-laden)
extensions—of the rudimentary scaffolding just described.

So are we placed in position to write xxx when we have in mind the position
of a Newtonian “point mass,” xxx(t) when we have in mind the motion of such an
(idealized) object,

{
xxx1(t), xxx2(t), . . . , xxxN(t)

}
when we have in mind an N -particle

system,
{
q1, q2, . . . , qn

}
with qi = qi(xxx1, xxx2, . . . , xxxN) when we find it analytically

convenient to abandon Cartesian coordinates and/or to represent the system
by a point in some imagined hyperspace.3

Having penetrated the world of mathematics, we acquire freedom (provided
we never snip the thread) to draw upon our mathematical imaginations to
construct “representations of configuration” of ascending complexity. We might,
for example, write

{
xxx,R

}
—with R a rotation matrix—to describe the placement

and orientation of a rigid body (idealized assembly of Newtonian particles). Or,
in the kinetic theory of gases, we might in place of

{
xxx1, xxx2, . . . , xxxAvagodro

}
find

2 One is reminded of Omar Khayyam’s “moving finger,” and of the fact that
he was a mathematician. Omar Khayyam (c–), though he had much
to say poetically concerning the nature of time, drew his inspiration not from
physics but from the interplay between algebra and geometry, in a tradition
which led directly to Descartes; see Chapter 13 in Carl Boyer’s A History of
Mathematics (2nd edition ).

3 Notice that one cannot use planks and a pair of dividers to construct
physical scaffolding in hyperspace! It is by a thread of associations that one
lends physical meaning/interest to such a point in such a place.
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it more convenient—and a more accurate reflection of the true state of our
knowledge—to write

ρ(xxx) ≡
{

course-grained density of molecules
in the neighborhood of the point xxx

which is to represent the instantaneous configuration of the molecular system
by a “point in the space of such density functions.”

It is when we turn from kinematics to dynamics—symbolized mẍxx = FFF (xxx)—
that the physics begins to become more overtly theory-laden: we discover that
we are forced to recognize a distinguished class of scaffolds; to distinguish
“inertial frames” from frames -in-general. And we discover that specification of
xxx(0) is insufficient to determine the subsequent trajectory xxx(t); that to specify
the latter we must—because the dynamical equations are differential equations
of second order—stipulate the initial values of both xxx and vvv ≡ ẋxx. So we learn
to distinguish
• descriptors of configuration (typified, in the simplest instance, by xxx) from
• descriptors of state (typified by

{
xxx, vvv

}
).

The former serve collectively to identify a “point in configuration space,” and
the latter to identify a “point in (double-dimensioned) state space.”

In the relatively more powerful setting afforded by Lagrangian mechanics
we have {

q1, q2, . . . , qn
}

: descriptor of configuration{
q1, q2, . . . , qn ; q̇1, q̇2, . . . , q̇n

}
: descriptor of state

Passage to the Hamiltonian formalism leads to a theory in which a doubled
population of variables

ξ ≡
{
q1, q2, . . . , qn ; p1, p2, . . . , pn

}
: descriptor of state

pi ≡ ∂L/∂q̇i

is subject to a coupled system of differential equations of only first order. In
Hamiltonian mechanics the concept of “configuration” assumes subordinate
status; “trajectories” live now not in configuration space but in state space
(“phase space”), and through each ξ(0) passes a single such trajectory ξ(t).

Consider again, from this point of view, our former mole of gas molecules.
To describe the instantaneous state of the gas we might mark a point in a
phase space of 6N dimensions (here N is Avagodro’s number). But—in the
approximation that the weakly-interactive gas molecules are non-interactive—
we could, alternatively, sprinkle a population of N points on a phase space of
only 6 dimensions. It becomes then natural to introduce a

statistical distribution ρ(xxx, ppp) on phase space
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to describe what we might actually know (or pretend we know) concerning the
state of the gas. And to write something like

ρ̇ = ∂ρ

∂xxx
ẋxx + ∂ρ

∂ppp
ṗpp = ∂ρ

∂xxx
∂H
∂ppp
− ∂ρ

∂ppp
∂H
∂xxx

=
[
ρ,H

]
(1)

to describe (as a “curve in the space of ρ -functions”) the dynamical evolution
of the state of the gas.

We have been brought thus to quite a congenial mathematical place, but
the thread that connects us back to the rude scaffold which was our point of
departure and must be our ultimate point of return . . .has grown rather long.

Which brings me to the threshold of quantum mechanics.

By Dirac’s interpretation of the theory created by Heisenberg/Schrödinger
the state—not the configuration but the state—of a quantum mechanical system
is to be represented by a complex vector, an element of a certain∞ -dimensional
complex vector space. That is certainly not a place in which we can erect
physical scaffolding. So we confront the question: How, in such a place, do we
secure ground to stand on? To what do we tie the thread that anchors us in
experienced reality?

Complex vector spaces and Dirac notation. Since the theory of complex vector
spaces is patterned upon the more familiar theory of real vector spaces, we
begin with a sketch of the essential elements of the later theory.

Objects
{
A,B, . . .

}
are elements of a real vector space RN if the set is

closed under real linear combination:

c1A + c2B ∈ RN for all A,B ∈ RN if c1 and c2 are real numbers

If
{
K1,K2, . . . ,KN

}
are linearly independent

c1K1 + c2K2 + · · ·+ cNKN = 0 if and only if c1 = c2 = · · · = cN = 0

and if every A ∈ RN can be developed

A = a1K1 + a2K2 + · · ·+ aNKN : written aiKi

then the vectors
{
K1,K2, . . . ,KN

}
comprise a basis in RN , and

{
a1, a2, . . . , aN

}
are the coordinates of A with respect to that basis. Every basis has the same
number of elements; that number N is the dimension of the vector space. The
vector space RN becomes an inner product space if there is defined on RN a real
number valued symmetric bilinear function (A,B)

(A,B) is a real number
(A,B) = (B,A)
(A, c1B1 + c2B2) = c1(A,B2) + c2(A,B2)
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with the added property that

|A | ≡ (A,A) � 0, with equality if and only if A = 0

Specification of an inner product can be achieved by specification of the
symmetric array of real numbers

gij ≡ (Ki,Kj)

and by imposing the requirement that G = ‖gij‖ be positive definite (i.e., that
all eigenvalues of G be positive). We then have

(A,B) = (aiKi, b
jKj) = aigij b

j =




a1

a2

...
aN




T


g11 g12 · · · g1N

g21 g22 · · · g2N

...
...

. . .
...

gN1 gN2 · · · gNN






b1

b2
...
bN




Given an inner product—thus defined—we are positioned to introduce a second
“dual” basis

{
K1,K2, . . . ,KN

}
with elements defined

Ki = gijKj with ‖gij‖ ≡ ‖gij‖–1

This we do so as to achieve
(Ki,Kj) = δij

from which it follows that the
{
K1,K2, . . . ,KN

}
-coordinates of an arbitrary

vector A can be described
ai = (Ki, A)

It is always possible (in infinitely many ways, and by any of several available
strategies) to construct in RN a basis

{
E1, E2, . . . , EN

}
which is orthonormal

in the sense that
(Ei , Ej) = δij =

{ 1 if i = j
0 otherwise

Such bases are distinguished by the property that they are “self-dual:” the
distinction between E i and Ei has evaporated, and we have (for all A) the
“Fourier expansion formula”

A =
∑

iEi (Ei, A)

Similarly . . . objects
{
A,B, . . .

}
are elements of a complex vector space CN

if the set is closed under complex linear combination and if, moreover,

A ∈ CN =⇒ A∗ ∈ CN

To say that
{
K1,K2, . . . ,KN

}
comprise a basis in CN is to assert that every

A ∈ CN can be developed

A = a1K1 + a2K2 + · · ·+ aNKN
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where the coordinates
{
a1, a2, . . . , aN

}
are now allowed to be (and typically

required to be) complex numbers. The vector space CN becomes an inner
product space if there is defined on CN a complex number valued ∗symmetric
function (A,B)

(A,B) is a complex number
(A,B) = (B,A)∗

which is linear in the second argument but ∗linear in the first argument

(A, c1B1 + c2B2) = c1(A,B2) + c2(A,B2)
(c1A1 + c2A2, B) = c∗1(A,B2) + c∗2(A,B2)

Necessarily |A | ≡ (A,A) is real; we impose, however, the stronger requirement
that

|A | ≡ (A,A) � 0, with equality if and only if A = 0

Specification of an inner product can be achieved by specification of the
∗symmetric array of complex numbers

hij ≡ (Ki,Kj) = h∗ji

and by imposing the requirement that H = ‖hij‖ be positive definite (i.e., that
all eigenvalues of H—which will be shown presently to be necessarily real—be
positive). We then have

(A,B) = (aiKi, b
jKj) = a∗ihij b

j =




a1

a2

...
aN



†


h11 h12 · · · h1N

h21 h22 · · · h2N

...
...

. . .
...

hN1 hN2 · · · hNN






b1

b2
...
bN




Given an inner product—thus defined—we proceed as before to introduce a
second “dual” basis

{
K1,K2, . . . ,KN

}
with elements defined

Ki = hijKj with ‖hij‖ ≡ ‖hij‖–1

We then have (Ki,Kj) = δij from which it follows that the coordinates of an
arbitrary vector A can be described ai = (Ki, A). The familiar advantages of
self-duality are achieved by bases

{
E1, E2, . . . , EN

}
which is orthonormal in the

familiar sense that
(Ei , Ej) = δij =

{ 1 if i = j
0 otherwise

With respect to such a basis every A ∈ CN can be developed

A =
∑

iEi (Ei, A) (2)

A linear operator L sends vector→vector in such a way as to conform to
the linearity condition

L(c1A1 + c2A2) = c1(LA1) + c2(LA2)
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The implication is that if one knows how L acts on the elements of a basis then
one knows how L acts on every vector A in the vector space. To describe the
action of L on

{
K1,K2, . . . ,KN

}
we write

Kj −→ LKj =
∑

iKi (Ki, LKj)︸ ︷︷ ︸
|
≡ Li

j , elements of L

Then A→ B = LA acquires (with respect to the K-basis) the representation

ai −→ bi = Li
ja

j

The adjoint M (usually denoted L+) of a linear operator L is defined

(MA,B) = (A, LB) : all A,B ∈ CN

It is a basis-independent notion, though clearly sensitive to specification of the
metric. In K-representation we have

(M k
ia

i)∗hkj b j = (ai )∗hikLk
j b

j

giving M
∗T

H = H L , which by conjugated transposition becomes

M = H
–1

L
†
H

↓
= L

† if the basis is orthonormal: H = I

In short: “adjunction” of a linear operator becomes “Hermitian conjugation”
in every orthonormal representation. Clearly

(L1 L2)+ = (L2)+(L1)+ and (L+)+ = L

—the matrix counterparts of which are familiar.

It was Dirac’s inspiration4 to
• let the elements of CN be notated |ψ), and be called “ket vectors;”
• let the inner product of |φ) on |ψ) be notated (φ|ψ), and be called a

“bracket.”
What Dirac called a “bra vector,” and denoted (φ |, is actually not an element
of CN but of CN ’s “dual”—the vector space of complex-valued linear functionals
F [•] whose arguments range on CN and satisfy the linearity condition

F [c1|ψ1) + c2|ψ2)] = c1F [|ψ1)] + c2F [|ψ2)]

4 See §§5–9 in The Principles of Quantum Mechanics (4th edition ).
Easier-to-read accounts of the formalism can be found in Griffiths’ Chapter 3
and in virtually every quantum text. For more carefully detailed discussion see,
for example, T. F. Jordan, Linear Operators for Quantum Mechanics ().
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According to “Riesz’ theorem”5 there corresponds to every such F [•] a |φ) ∈ CN

such that, for every |ψ) ∈ CN , F [|ψ)] = (φ|ψ). So (φ | might better be written
(φ|•). But in all applications one can proceed as though

(ψ| = |ψ)∗ informally, as a manner of speaking

and can on that basis recover

(φ|ψ)∗ = (ψ|φ)

In any (orthonormal) representation all mystery disappears: the representative
of (φ| is a row vector, the conjugate transpose of the column vector which
represents |ψ).

Dirac achieves enhanced formal elegance/simplicity by excluding from
consideration all non-orthonormal bases (i.e., by excluding bases in which
up/down index placement—for which his notation makes no provision—makes
a difference). To express the orthonormality of a basis

{
|1), |2), . . . , |N)

}
he

writes
orthonormality : (m|n) = δmn (3)

Every |ψ) ∈ CN can, by (2), be developed

|ψ) =
∑

n|n)(n|ψ) (4)

To indicate that the set
{
|n)

}
is “complete” in the sense that is spans CN , and

permits every |ψ) ∈ CN to be developed in this way, Dirac writes

completeness : I =
∑

n|n)(n| (5)

Notice that, while (bra)···(ket) is a complex number, (ket)···(ket) is a linear
operator: |α)(β | applied to |ψ) gives (β|ψ)···|α). More particularly, the operators

pn ≡ |n)(n| (6.1)

comprise a complete (
∑

n pn = I) set of orthogonal (pm pn = 0 if m �= n)
projection operators (p2

n = pn), and each pn projects onto its associated basis
element:

pn|n) = |n) (6.2)

The expanded set of operators |m)(n | permits one to develop any linear
operator:

L = I · L · I =
∑

m

∑
n|m)(m|L |n)(n| (7)

=
∑

m

∑
nLmn|m)(n| with Lmn ≡ (m|L |n)

5 See p. 13 in Jordan or L. E. Ballentinie, Quantum Mechanics (), p. 3.
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Looking back in this light to (5) we have, associated with every orthonormal
basis, what is called a “resolution of the identity” into summed orthogonal
projection operators.

To express, within the Dirac formalism, the condition which lends meaning
to the statment M = L+ one might write

(φ|M
←
|ψ) = (φ|L

→
|ψ) all |φ), |ψ) ∈ CN (8.1)

to indicate that M acting to the left yields always the same result as L acting to
the right. This is frequently a useful point of view, but it would be notationally
less cluttered to write

(ψ|M |φ) = [(φ|L |ψ)]∗ (8.2)

which when referred to the
{
|n)

}
basis becomes (with

∑
m,n understood)

(ψ|m)(m|M |n)(n|φ) = [(φ|n)]∗[(n|L |m)]∗[(m|ψ)]∗

= (ψ|m)[(n|L |m)]∗(n|φ)

giving back again (m|M |n) = [(n|L |m)]∗; i.e., M = L
†.

The spectral properties of an operator A arise from writing

A |a) = a|a)

Let A be self-adjoint. Then [(a|A |a)]∗ = (a|A+|a) = (a|A |a) is on the one hand
assuredly real, but on the other equal to a(a|a). Since (a|a) is also known to
be real, we may conclude that

the eigenvalues a1, a2, . . . , aN of any self-adjoint A
are necessarily real (though not necessarily distinct)

Next, let a1 and a2 be distinct eigenvalues of A :

A |a1) = a1|a2) and A |a2) = a2|a2)

Then

(a1|A |a2) =
{
a2(a1|a2) if A looks right, but
a1(a1|a2) if A looks left

Consistency with a1 �= a2 entails (a1|a2) = 0:

eigenvectors |a1) and |a2) associated with distinct eigenvalues
of any self-adjoint A are necessarily orthogonal: (a1|a2) = 0

If the spectrum of A is non-degenerate, and if we assume the eigenvectors
to have been normalized (ai|ai) = 0, then the population of eigenvectors

{
|ai)

}
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supplies an orthonormal basis in CN , and when A is developed in its own basis
we obtain

A =
∑

i

∑
j |ai)(ai|A |aj)(aj |

=
∑

i |ai)ai(ai| (9)

by (ai|A |aj) = (ai|aj)aj = δijaj . We observe that the matrix representative of
A in its own eigenbasis is diagonal

A =




a1 0 0
0 a2 0

. . .
0 0 aN




The right side of (9) presents what is called the “spectral representation” of the
self-adjoint operator A .

We have finally to consider “linear isometries” in CN . If a linear operator
U preserves all inner products (brackets)

(α|U+ U |β) = (α|β ) : all |α), |β ) ∈ CN

then necessarily it preserves all norms

(ψ|U+ U |ψ) = (ψ|ψ) : all |ψ) ∈ CN

But the latter condition can be expressed

(ψ|A |ψ) = 0 where A ≡ U+ U − I is self-adjoint

which, if valid for all |ψ), pretty clearly6 requires A = 0 . We conclude that
|ψ)→ U |ψ) will be isometric if and only if U is unitary :

U+ U = I (10)

In orthonormal representation we have U
†
U = I , which is the complex analog of

the stipulation R
T
R = I that R be a rotation matrix; i.e., that the associated

linear operator R act isometrically upon RN .

Quantum state, and rudiments of the quantum theory of measurement. Though
a variety of other—equivalent or generalized—modes of representation will
emerge, we can, for starters, assert that

the momentary state of a quantum system S

can be represented by a unit vector |ψ) ∈ CN

(11)

6 See Paul Halmos, Finite-dimensional Vector Spaces (2nd edition ), §73.



12 Introductory concepts, methods & issues

The specific identity of CN is contingent . . .upon general principles yet to be
described, and upon the physical details of S.

Earlier we had occasion to ask: How, in such a place [as CN ] as do we
secure ground to stand on? To what do we tie the thread that anchors us
in experienced reality? The answers are provided by the theory of self-adjoint
operators. Specifically, to every “classical observable”—i.e., to every real-valued
function A(x, p) defined on classical phase space—we associate a self-adjoint
linear operator A which acts upon the elements of CN . We then associate
• the possible meter-readings which can result from A -measurement with the

(necessarily real) eigenvalues of A ;
• the possible quantum states immediately subsequent to such a measurement

with the eigenvectors of A .

Each observable contrives spectrally to erect its own individual “orthogonal
scaffold

{
|a)

}
in the space of states.” How that abstract construction becomes

tied to the scaffold which we have constructed from boards here in the
laboratory hinges upon our answer to this fundamental question:

By what specific rule of correspondence is the association

A(x, p) ←→ A

to be established?

(12)

This is a question to which we will return. But for the moment. . .

Look more closely to the idealized measurement process to which I have
alluded. System S, in unknown quantum state |ψ), is presented to (meaning
“brought into interaction with”) the measurement device represented by the
operator A (I will call such a device an “A-meter”). After the interaction is
complete
• the device is in the state a reported by its read-out mechanism, and this is

interpreted to mean that
• the system S is in state |a).

Quantum mechanically fundamental is the fact that repetitions yield statistically
scattered results: we obtain

|ψ) −−−−−−−−−−−−−−−−−→
A-measurement




|a1) with probability P1 = |(a1 |ψ)|2
|a2) with probability P2 = |(a2 |ψ)|2
...
|an) with probability Pn = |(an|ψ)|2
...

Quantum measurement is, by this scheme, a “state-preparation process,” and
measurement devices are, in effect, sieves: the input state |ψ) is resolved

|ψ) =
∑

i|ai)(ai|ψ)

and the device acts (probabilistically) to
• to pass one of the eigen-components, and
• to annihilate all others.
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We assert that a measurement has actually taken place on these grounds: if the
output |an) of a measurement which registered an is immediately re-presented
to an A-meter we have

|an) −−−−−−−−−−−−−−−−−→
repeated A-measurement




|a1) with probability P1 = |(a1 |an)|2 = 0
|a2) with probability P2 = |(a2 |an)|2 = 0
...
|an) with probability Pn = |(an|an)|2 = 1
...

which is to say: we recover (or “confirm”) the previous result with certainty.

The expected average of many independent A-measurements (i.e., of the
results obtained when many identical copies of |ψ) are presented serially to an
A-meter) can be described

〈a〉ψ =
∑

iaiPi

=
∑

iai|(ai|ψ)|2

= (ψ|
{∑

i|ai)ai(ai|
}
|ψ

= (ψ|A |ψ) (13.1)

but alernative descriptions exist and are sometimes more useful. For example,
let

{
|n)

}
be some arbitrary orthonormal basis in the space of states. Drawing

upon the completeness condition (5), we have

=
∑

n(ψ|n)(n|A |ψ)
=

∑
n(n|A |ψ)(ψ|n)

=
∑

n(n|Aψψψ |n) where ψψψ ≡ |ψ)(ψ| projects onto |ψ)
= trAψψψ (13.2)

In ψψψ we have encountered the germ of what will grow up to become the “density
matrix,” which plays an indispensable role in a broad assortment of applications.
The mth moment of the measured data can be described variously

〈am 〉ψ =
∑

i(ai)
mPi

= (ψ|Am |ψ)
= trAmψψψ

(13.3)

where use has been made of Am =
∑

i |ai)ami (ai|. In the case m = 0 we have
(for any observable)

〈a0 〉ψ =
∑

iPi = 1 : probabilities sum to unity
= (ψ|ψ) : state vector is normalized
= trψψψ

(13.4)
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Complex multiples c|α) of any |α) ∈ CN are elements of a 1-dimensional
subspace of CN , the “ray” indicated by |α). State vectors |ψ) live at the points
where rays puncture the “unit ball” in CN . We observe that

|ψ) a state vector =⇒ c|ψ) a state vector if and only if c = ei(phase)

and that the formulæ (13) which describe the physical output of quantum theory
are phase-insensitive.

Superimposed (more generally: linearly combined) state vectors are, in
general, not state vectors until renormalized , and linear combination followed
by renormalization

c1|ψ1) + c2|ψ2) −→ |ψ) ≡c1|ψ1) + c2|ψ2)
norm

norm |ϕ) ≡
√

(ϕ |ϕ) ≡ ‖ |ϕ) ‖ (14)

is a non-linear process. In this fundamental respect quantum mechanics (wave
mechanics) departs from the classical wave physics (acoustics, physical optics)
which historically served as it model: superimposed sounds yield sound.7

We note in passing that

‖eiα|a) + eiβ |b)‖2 = (a|a) + (b |b) + ei(α−β)(b |a) + ei(β−α)(a|b)

which shows the norm of linearly combined vectors to be invariant with respect
to adjustment of the absolute phase (set α = β ), but sensitive to adjustment
of the relative phase.

Turn the A-meter back on, and let |a) be some designated one of its eigen-
states. In operation, it stimulates the projective transition

|a)←− |ψ) with probability P = |(a|ψ)|2 (15)

Let
{
|b)

}
be any orthonormal basis (which may but for present purposes need

not be thought of as eigenstates of an B-meter). Ditto
{
|c)

}
. Then

(a|ψ) =
∑

j(a|bj)(bj |ψ) (16.1)

It was, so far as I am aware, Richard Feynman8 who first stressed the utility
of considering (a|bj)(bj |ψ) to describe (not the probability but) the “probability

7 At this point my reader might very usefully give close reading to Dirac’s
Chapter I (especially §4), which provides a very careful discussion of the
formative role of the principle of superposition in quantum mechanics.

8 “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod.
Phys. 20, 267 (1948); The Feynman Lectures of Physics (), Volume III,
Chapter 3.
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amplitude” that the transition |a)←− |ψ) proceeded via the intermediate state
|bj). In this language

|a)←−|b1)←− |ψ) proceeds with amplitude (a|b1)(b1|ψ)
|a)←−|b2)←− |ψ) proceeds with amplitude (a|b2)(b2|ψ)

...

But one could equally well write

(a|ψ) =
∑

j

∑
k(a|bj)(bj |ck)(ck|ψ) (16.2)

and claim that (for example)

|a)← |b1)← |c5)← |ψ) proceeds with amplitude (a|b2)(b2|c5)(c5|ψ)

Evidently there is an element of “creative fiction” associated with any claim
that |a) ←− |ψ) proceeds via one or another of a population of independent
channels or “paths,” but every reason to suppose that Feynman’s proposal that
we (i) identify a population of paths which contribute independently to the
process |a)←− |ψ); (ii) assign a probability amplitude to each such path, and
(iii) write

probability amplitude [process] =
∑
paths

probability amplitude [path] (17)

will give correct results if properly managed. We are placed on notice, however,
that—owing to the large element of arbitrariness built into the program—it
would be a profound mistake (called by philosophers the “fallacy of misplaced
concreteness”) to suppose that (17) provides a physically literal/correct account
of “how quantum processes proceed.”9 But (17) does serve to underscore how
radically different from ordinary probability is the probabilistic view of the
world presented by the quantum theory:
• in ordinary probability theory one adds the probabilities of independent

events, while
• in quantum mechanics one adds probability amplitudes

and of course ∣∣∣ ∑
amplitudes

∣∣∣2 �= ∑ ∣∣∣amplitudes
∣∣∣2

In a manner of speaking, we have

quantum statistics =
√

ordinary statistics

9 The meaning I ascribe to a phrase introduced into philosophy in relatively
recent times by Alfred North Whitehead may well depart from that intended
by him. Virtually all of what physicists say about the structure of the world is
susceptible in some degree to a charge of “misplaced concreteness,” but some
statements by some physicists are more blatantly defective than others.
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Quantum kinematics/dynamics & the concept of “picture”. Acts of quantum
mechanical “measurement”—projective state-preparation—are, in all but the
most refined accounts, assumed to take place instantaneously. The notion of
a “path” |a) ← |bj) ← |ck) ← |ψ), as evoked at (16), draws upon a concept
of temporal sequence (before/after; first this, then that), but makes no use of
“metrized time,” no use of any concept of temporal rate of change. Introduction
of the latter notion takes us from the “geometry of quantum mechanics” to
quantum kinematics/dynamics.

“Wave mechanics” was designed to provide an account of interference
effects which is directly imitative of the interference theory provided by classical
acoustics and physical optics. The latter theories are linear field theories to
which the principle of superposition is central: superimposed fields move by
superposition of the motion of their component parts. We are led thus to
contemplate a quantum kinematics in which—during the intervals between
measurements—|ψ) wanders around on the “unit ball,” not just any old way,
but by linear isometry :

|ψ)0 −→ |ψ)t = U(t)|ψ)0 (18)

with U(t) unitary. Differentiation of (18) gives

d
dt |ψ)t = dU

dt U+|ψ)t (19)

But differentiation of the unitarity condition UU+ = I gives

dU
dt U+ = −

{
ditto

}+ : dU
dt U+ is always and necessarily antiself-adjoint

and every antiself-adjoint linear operator A can be written A = −iS with S
self-adjoint.10 The implication is that (19) can always be expressed

i ddt |ψ)t = S |ψ)t (20.1)

and that the “propagator” U(t) always satisfies a first-order differential equation
of the form

d
dt U = −iS U (20.2)

Here S can, in principle, be any self-adjoint linear operator with the physical
dimension of reciprocal time: [S ] = (time)–1.

If S is itself t -independent then (20.2) entails

U(t) = e−iS tU(0) (21.1)
U(0) = I was stipulated at (18)

which when introduced into (18) gives

|ψ)t = e−iS t|ψ)0 (21.2)

10 The minus sign has been introduced to achieve agreement with established
convention.
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The unitarity of U(t) is by itself sufficient to insure that one can in all cases
write

U(t) = e−iW(t) with W(t) self-adjoint

but only exceptionally11 does W(t) admit of simple description.

The differential equation (20.1) can also be expressed

|ψ)t = |ψ)0 − i

∫ t

0

S(τ)|ψ)τ dτ (22)

The advantages of doing so are that (i) initial date is built into the design of
(22), while at (20.1) it must be carried as a side-condition, and that (ii) invites
solution by iteration

|ψ)t =
{

I − i

∫ t

0

S(τ) dτ + (−i)2
∫ t

0

∫ τ

0

S(τ)S(σ) dσdτ + · · ·
}
|ψ)0 (23)

which in some contexts proves very useful.

Quantum kinematics goes over into quantum dynamics when, as an
instance of (12), one posits an association of the form

H(x, p) ←→ H : introduction of the Hamiltonian operator (24)

and to S assigns the specific interpretation S = 1
�

H . Equation (20.1) then
becomes the time-dependent Schrödinger equation

H |ψ) = i	 d
dt |ψ) (25)

In an important class of cases dH
dt = 0 ; in such cases one has

|ψ)t = U(t)|ψ)0 with U(t) = e−(i/�)H t (26)

If, in such a case, one adopts as an ansatz the proposition that

|ψ)t = f(t)· |Ψ)

—if one, in other words, assumes “time separation”— then (25) reads

f · H |Ψ) = i	df
dt · |Ψ)

Assume additionally (and without loss of generality) that (Ψ|Ψ) = 1. Then

(Ψ|H |Ψ) = i	df
dt

/
f = separation constant E

and we obtain

|ψ)t = e−(i/�)E t · |Ψ) with H |Ψ) = E |Ψ) (27)
↑
—time-independent Schrödinger equation

11 For example: if dS
dt = 0 , when—as we have seen—W(t) = St.
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Exponientated operators are usually (and for many purposes most simply)
developed as formal power series—for example

U(t) =
∞∑
k=0

1
k!

[
− (i/	)Ht

]k (28)

—but other descriptions are available, and frequently more useful. For example:
let

{
|n)

}
refer to the orthonormal basis which H erects in CN

H |n) = En|n) (29)

and assume the spectrum of H to be non-degenerate. Then as an instance of
(9) we have

H =
∑

n|n)En(n| (30)

Orthonormality entails |m)(m|·|n)(n| = δmn|n)(n| whence Hk =
∑

n|n)Ek
n(n|

which introduced back into (28) gives

U(t) =
∑

n|n)e−(i/�)Ent(n| (31)

Equation (30) provides the “spectral representation of the Hamiltonian,” and
(31) the spectral representation of the associated propagator. Application to
|ψ)0 yields

|ψ)t =
∑

n|n)e−(i/�)Ent(n|ψ)0 (32)

which can be interpreted this way: |n)(n| projects out the |n)-component which
was present in |ψ)0, which the e−(i/�)Ent factor sets buzzing, with angular
frequency ωn = En/	. The motion of |ψ)t is results from the superposition of
those independent (and generally asynchronous) buzzings.

All of which is imagined to proceed only so long as we don’t look ! An
A-measurement, if performed at time τ , would yield the (eigen)value ai with
probability |(ai|ψ)τ |2; assuming that the measurement in fact yielded the value
a8 then the subsequent state (up until the time of the next measurement) would
be described

|ψ)t =
∑

n|n)e−(i/�)En(t−τ)(n|a8)0 : t � τ

Measurement is projective, and entails (not only the extraction of but also—
unavoidably) a loss of latent information; from |ψ)t>τ it is not possible to
retrodict , not possible to recover properties of |ψ)t prior to the time of most
recent measurement.

Look now to the time-dependence of the expectation value 〈A〉. We will
make the simplifying assumption (consistent with the facts in most cases) that
the operating characteristics of the A-meter are held constant. Then (25) entails

d
dt 〈A〉t = 1

i�

{
t(ψ|AH |ψ)t − t(ψ|HA |ψ)t

}
= − 1

i� (ψ|[H , A ]|ψ) (33)
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where [H , A ] ≡ HA−AH is the commutator of H with A , and where as
henceforth the pedantic t has been/will be dropped except where its absence
might cause confusion. The procedural meaning of d

dt 〈A〉t is clear, if a little
contrived:
• With system S in the prepared state |ψ)0, wait a time t, then perform an
A-measurement;
• Do this many times, and compute the average of your results. 〈A〉t is the

theoretical estimator of the number thus produced.
• Proceed similarly to obtain the number estimated by 〈A〉t+δt.
• Construct the datum estimated by

{
〈A〉t+δt − 〈A〉t

}
/δt.

We were led to (33) on the assumption that 〈A〉t inherits its t -dependence
from |ψ), which moves while A just sits there. That is the “Schrödinger picture”
of events. But 〈A〉 = (ψ|A |ψ) is a duplex construct, and we are free to
reapportion responsibility for its time-dependence amongst its parts . . .which
is to say: we might, for example, consider (33) be result from the proposition
that observables move by the law

d
dt A = − 1

i� [H , A ] (34)

while the state vector |ψ) just sits there. This is the “Heisenberg picture” of
events. To phrase the distinction another way, we have

|ψ)0 −→ |ψ)t = U(t)|ψ)0
A0 −→ A t = A0

}
: schrödinger picture (35.1)

|ψ)0 −→ |ψ)t = |ψ)0
A0 −→ A t = U+(t)A0 U(t)

}
: heisenberg picture (35.2)

and in either case obtain

(ψ|A |ψ) −→ (ψ|U+(t)A U(t)|ψ)

An infinitude of alternative/intermediate pictures become available when one
writes

|ψ)0 −→ |ψ)t = W(t)|ψ)0
A0 −→ A t = V+(t)A0 V(t)

and requires that V(t) and W(t) (unitary) satisfy V(t)W(t) = U(t); at least one
of those—the so-called “interaction picture,” introduced by Dirac in —is
of major importance.12

12 The interaction picture comes into play in situations where H has the
perturbed form H = H0 + λH1. One lets H0 govern the motion of operators,
and H1 govern the motion of states. See S. S. Schweber An Introduction to
Relativistic Quantum Field Theory () §11c; K. Huang, Quantum Field
Theory: From Operators to Path Integrals () §8.2 or J. Jauch & F. Rohrlich,
The Theory of Photons & Electrons () §4–3 for details.
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Though little mystery attaches to the i which appears on the right side of
(34), I mention in passing that its presence can be understood as follows: if
A(t) is self-adjoint then so, necessarily, is its derivative. On the other hand

[(self-adjoint), (self-adjoint)] = antiself-adjoint
= i(self-adjoint) (36)

And the 	 is required for dimensional reasons, since [H ] = (energy).

The motion (in the Schrödinger picture) of the density matrix ψψψ ≡ |ψ)(ψ|
can by (25) be described

d
dtψψψ = + 1

i� [H , ψψψ ] (37.1)

or again
ψψψ0 −→ ψψψt = U(t)ψψψ0U

+(t) (37.2)

Equation (37.1) resembles (34) except for the sign; similarly, (37.2) resembles
(35.2) except for the reversed placement of the + marks. The origin of those
critical distinctions can be understood as follows:

〈A〉0 = trAψψψ −→ 〈A〉t = trA ·UψψψU+ = trU+AU · ψψψ (38)
Schrödinger Heisenberg

where we have made use of a fundamental property of the trace: trAB = trBA.

In the Heisenberg picture operators, generally speaking, move. But it is
an immediate implication of (34) that if A commutes with H then A does not
move but just sits there—a constant of the motion:

if [H , A ] = 0 then A t = A0 (all t) (39)

The motion of expectation values is picture-independent (and therefore of
deeper intrinsic interest); evidently

〈A〉ψ is, for all |ψ), a constant of the motion iff [H , A ] = 0 (40)

The “picture” concept is latent (if seldom exploited) already in classical
mechanics. If ρ(ξ; 0) describes some initial distribution of state points on phase
space, and if A(ξ) is some observable,13 then

〈A〉0 =
∫

A(ξ)ρ(ξ, 0) dξ

describes the average of the values assumed by A at those state points. By
solution of (1) we obtain ρ(ξ, t), and in the “classical Schrödinger picture”
would at subsequent times write

〈A〉t =
∫

A(ξ)ρ(ξ, t) dξ

13 I again use ξ to stand for the entire set
{
q1, q2, . . . , qn ; p1, p2, . . . , pn

}
of

phase space coordinates, and understand dξ to mean dq1 · · · dqndp1 · · · dpn.
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But 〈A〉 is a “duplex construct;” we could, if we wished, transfer some or all of
the time-dependence from the distribution ρ to the observable A, writing (in
the latter instance)

〈A〉t =
∫

A(ξ, t)ρ(ξ) dξ

We would have arrived then in the “classical Heisenberg picture.”

Poisson brackets & commutators. Hamilton’s canonical equations of motion can
be written

d
dtq

i = −[H, qi ] = +∂H/∂pi
d
dtpi = −[H, pi ] = −∂H/∂qi

}
(41)

where the Poisson bracket is defined

[A,B ] ≡
∑
k

{
∂A
∂qk

∂B
∂pk
− ∂B

∂qk
∂A
∂pk

}
(42)

The rate of variation of A(q, p), induced by the dynamical variation of its
arguments, can therefore be described

d
dtA = −[H,A ] (43)

from which (41) can be recovered as particular instances. Equations (43) and
(34) present similar marks on the page, but mean quite different things. Yet—as
will ultimately emerge—not so different as might at first appear.

What follows is a list of general properties of the Poisson bracket .14

antisymmetry : [A,B ] + [B,A ] = 0 (44.1)
bilinearity : [A, β1B1 + β2B2] = β1[A,B1] + β2[A,B2] (44.2)

product rule : [A,BC ] = [A,B ]C + B[A,C ] (44.3)
jacobi identity : [A, [B,C ]] + [B, [C,A ]] + [C, [A,B ]] = 0 (44.4)

The product rule stems from the circumstance that

DA ≡ [A, • ] ≡
∑
k

{
∂A
∂qk

∂
∂pk
− ∂A

∂pk

∂
∂qk

}
(45)

is a kind of glorified differentiation operator; note, however, the placement of the
factors (C comes after the [A,B ] bracket, and B before the [A,C ] bracket),
which makes no difference at present, but will after A, B and C have been
transmuted into non-commutative operators A , B and C . Note also that the
Jacobi identity, rewritten [A, [B, • ]]− [B, [A, • ]] = [[A,B ], • ], entails

DADB −DBDA = D[A,B] (46)

14 For more detailed discussion and references see classical mechanics
(), pp. 258 et seq .
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which is sometimes useful.

Remarkably, the list (44) is precisely mimiced by the following list of general
properties of the commutator :

antisymmetry : [A , B ] + [B , A ] = 0 (47.1)
bilinearity : [A , β1 B1 + β2 B2] = β1[A , B1] + β2[A , B2] (47.2)

product rule : [A , B C ] = [A , B ]C + B [A , C ] (47.3)
jacobi identity : [A , [B , C ]] + [B , [C , A ]] + [C , [A , B ]] = 0 (47.4)

In (47.3) the placement of the B and C factors has now become critical.

Reverting for a moment from commutators to Poisson brackets: Let A(q, p)
and B(q, p) be present as sums/products of their arguments. Then with the aid
of (44) the bracket [A(q, p), B(q, p)] can be reduced to the form

[A,B ] =
∑

terms of the form (stuff)·[qi, pj ]·(stuff)

so that if one possessed descriptions of the “primitive brackets” [qi, pj ] one
would be in position to evaluate [A,B ] without doing any differentiation. And
if fact we do possess descriptions of the primitive brackets; we have

[qi, qj ] = [pi, pj ] = 0 (all i and j)

[qi, pj ] = δij

}
(48)

example : Let xxx ≡
{
x1, x2, x3

}
refer to a Cartesian coordinate system, and

look to the triple of observables (components of angular momentum) defined

L1(x, p) ≡ x2p3 − x3p2

L2(x, p) ≡ x3p1 − x1p3

L3(x, p) ≡ x1p2 − x2p1

Then

[L1, L2] = [x2p3, x3p1]− [x2p3, x1p3]− [x3p2, x3p1] + [x3p2, x1p3]

But [xipj , xkpl] = [xi, xk]pjpl+xk[xi, pl]pj+xi[pj , xk]pl+xixk[pj , pl] so we have

[L1, L2] = + [x2, x3]p3p1 + x3[x2, p1]p3 + x2[p3, x3]p1 + x2x3[p3, p1]
− [x2, x1]p3p3 − x1[x2, p3]p3 − x2[p3, x1]p3 − x2x1[p3, p3]
− [x3, x3]p2p1 − x3[x3, p1]p2 − x3[p2, x3]p1 − x3x3[p2, p1]
+ [x3, x1]p2p3 + x1[x3, p3]p2 + x3[p2, x1]p3 + x3x1[p2, p3]

= −x2p1 + x1p2 + fourteen 0’s
= L3
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Similarly [L2, L3] = L1 and [L3, L1] = L2. Moreover

[L1, L
2] = [L1, L1]L1 + L1[L1, L1]

+ [L1, L2]L2 + L2[L1, L2]
+ [L1, L3]L3 + L3[L1, L3]

= L3L2 + L2L3 − L2L3 − L3L2

= 0

and by the same argument [L2, L
2] = [L3, L

2] = 0. I don’t claim “bracket
evaluation by atomization” (i.e, by reduction to primitive brackets) is a notably
efficient procedure, only that it works (though it is in fact much more efficient
than the pedantic detail of the example might suggest; in practice one would
omit all obvious steps, and find the procedure to be actually quite efficient).

The point is that the procedure just described would work also quantum
mechanically if one possessed descriptions of the primitive commutators. Those
were supplied by Dirac, who postulated that quantization sends the statements
(48) over into

[qi , q j ] = [p i , p j ] = 0 (all i and j)

[qi , p j ] = i	δij I

}
(49)

The rationale for the introduction of the i	 factor has already been explained
in another connection: the 	 is dimensionally forced, and the i is needed to
make the right expression on the right conform to the antiself-adjointness of
the expression on the left.

Drawing upon (49), our recent example can be used without change to
supply

[L1, L2] = i	L3, etc. (50.1)

and
[L1, L2 ] = 0 , etc., with L2 ≡ (L1)2 + (L2)2 + (L3)2 (50.2)

For an alternative (and, in my view, even more tedious) derivation of these
classic formulæ see §4.3 in Griffiths.

In quantum mechanics the phase coordinates qi and pj are replaced by
self-adjoint linear operators q j and pk which fail to commute, but only weakly ,
in the sense that (according to (49)) they commute with their commutators:15

[q i, [q j , pk]] = [p i, [q j , pk]] = 0 (all i, j and k) (51)

“Weak non-commutativity” is, however, the ultimate source of much that is
most distinctive about the quantum theory.

15 The argument can be turned around: one can show that if qi and p j satisfy
(49) and if [qi , M ] = [p i , M ] = 0 then necessarily M is a multiple of I . See
Appendices A & B in Ballentine5 or §19 in Jordan4 for details.
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Why is quantum state space necessarily infinite-dimensional? The simple answer
is implicit in the thread that ties formalism to observation. If we propose to
associate position-measuring metersticks with linear operators x , if we propose
more particularly to associate the results x of position measurement with the
eigenvalues of x , and if the conceivable results of such measurement are to be
associated with (which is to say: as numerous as) points on the real line, then
the spectrum of x must be continuous, and no finite-dimensional matrix X can
claim that distinction. (The argument would, however, fail if physical space
were in fact discrete and finite, and we can only advance good but imperfect
observational evidence in defense of the proposition that it isn’t.)

Actually, we lost the prospect of a “finite-dimensional quantum mechanics”
when at (49) we postulated a commutation relation of the form

[x , p ] = i	 I (52)

for in N×N matrix representation

X P− P X = i	 I (53)

it would follow upon formation of the trace that 0 = i	N , which is absurd:
finite-dimensional matrices X and P which satisfy (53)—whether hermitian or
not—cannot exist . It is not immediately evident how the force of that simple
argument fails in the limit N → ∞, but examples (of which we will encounter
many) serve to clarify the point; the following example has been borrowed from
the quantum theory of oscillators.16 Let

X6 ≡
√

	/2




0 +
√

1 0 0 0 0√
1 0 +

√
2 0 0 0

0
√

2 0 +
√

3 0 0
0 0

√
3 0 +

√
4 0

0 0 0
√

4 0 +
√

5
0 0 0 0

√
5 0




P6 ≡ i
√

	/2




0 −
√

1 0 0 0 0√
1 0 −

√
2 0 0 0

0
√

2 0 −
√

3 0 0
0 0

√
3 0 −

√
4 0

0 0 0
√

4 0 −
√

5
0 0 0 0

√
5 0




Then (ask Mathematica)

X6P6 − P6X6 = i	




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −5




16 See pp. 48, 34 & 80 in Chapter 2 of quantum mechanics ().
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which make obvious how one should define XN and PN , and that

XNPN − PNXN = i	




1
1

. . .
1

(1−N )




︸ ︷︷ ︸
traceless . . . funny entry gets pushed off page as N→∞

So every matrix representation of the fundamental commutation relation
[x , p ] = i	 I is necessarily∞ -dimensional,∞ -dimensional representations do in
fact exist, and it can be shown, moreover, that distinct representations

{
X ,P

}
and

{
X
′
,P
′} are always unitarily equivalent. Finite-dimensional models of

quantum mechanics are impossible, but models of those aspects of quantum
theory which are independent of [x , p ] = i	 I are possible, and are often quite
informative.

In full -blown quantum theory all previous references to CN should be
replaced by references to C∞. Which is quite a different place. Does

CN −→ C∞

make a difference? Certainly. Infinite-dimensionality means that finite sums
become infinite sums, and one must introduce sufficient structure to insure
convergence, and attend to other delicate matters; one must, in short, invent
“Hilbert space.”17

Well-bred physicists are often quick to genuflect toward Hilbert space, and
some physicists (typically those with nothing more physical to do) seem actually
to enjoy visits to that arid land, from which they tend to return fired with the
zeal of missionaries, muttering obscurely. But most work-a-day physicists give
thought to the established religion only in moments of peril, when their work
has gone off-track . . . or threatens to. They are content—as I am content—to
proceed with sometimes reckless informality, confident that Nature will forgive
and correct their errors. What was good enough for Dirac is—if not good
enough for von Neumann, who wrote in reaction to Dirac—good enough for us.

17 See sources like Griffiths, p. 100; Ballentine §1–4 or Jordan §3 for short
introductions. And monographs (of which there are many) like P. Halmos,
Introduction to Hilbert Space (), F. Riesz & B. Sz.-Nagy, Functional
Analysis () or J. von Neumann, Mathematical Foundations of Quantum
Mechanics (/, English translation ) for the gory details. Hilbert’s
work was done in connection with the theory of integral equations, during the
first decade of the century; its special appropriateness to quantum mechanics
was first emphasized by the 23-year-old von Neumann (–). Historical
details can be found in §6.3 in Max Jammer’s indispensable (but currently out
of print) Conceptual Development of Quantum Mechanics ().
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On the assumption that A has a (non-degenerate) discrete spectrum, we
have in the past written

A |ai) = ai|ai)
with ∑

i

|ai)(ai| = I and (ai|aj) = δij

With N →∞ we are forced to recognize the possibility that the spectrum of A
may be continuous, and find it natural in such cases to write

A |a) = a|a) (54)

with ∫
|a)da(a| = I and (a|b) = δ(a− b) (55)

and (with Dirac) to impute such properties to the “δ -function” (continuous
analog of the Kronecker delta) as are sufficient to insure∫

|a)da(a|b) =
∫
|a)δ(a− b) da = |b)

We will frequently find it convenient to retain that continuity-adapted notation
even in cases where the spectrum is discrete (or mixed discrete/continuous, like
the energy spectrum of the hydrogen atom).

The position operator X (which in a 3-dimensional world would be written
X1 joined also by X2 and X3) provides just such an occasion: we write

X |x) = x|x) (56)

and claim ∫
|x)dx(x| = I and (x|y) = δ(x− y) (57)

Then

|ψ) =
∫
|x)dx(x|ψ)

=
∫
|x)ψ(x)︸︷︷︸ dx (58)

|
—“wavefunction” ≡ coordinates (x|ψ) of |ψ) in the x-representation

It was in x-representation—as a theory about ψ(x)—that Schrödinger’s version
of quantum mechanics was first presented to the world, but it appears to have
evident from the outset to both Dirac and Jordan18 that the abstract essence
of the situation was much simpler and more elegant than Schrödinger initially
represented it to be.

18 Ernst Pascual Jordan (–) became associated with Courant, Born,
Debye and others soon after he arrived as an undergraduate in Göttingen, where
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The abstract Schrödinger equation (25) can, in x-representation, be written∫
(x|H |y)ψ(y, t) dy = i	 ∂

∂tψ(x, t) (59)

which in integrated form (26) becomes

ψ(x, t) =
∫

(x|U(t) |y)ψ(y, 0) dy

=
∫

G(x, t; y, 0)ψ(y, 0) dy with G(x, t; y, 0) ≡ (x|U(t) |y) (60)

The propagator U(t) has in representation become the Green’s function. If the
Hamiltonian is time-independent then we have (31), which becomes

G(x, t; y, 0) =
∑
n

(x|n)e−(i/�)Ent(n|y) (61.1)

=
∑
n

e−(i/�)EntΨn(x)Ψ∗n(y) (61.2)

where the energy eigenfunctions (no longer called eigenvectors) arise from (29):∫
(x|H |y)Ψ(y) dy = EnΨ(x) (62)

(continued from the preceding page) he assisted in the editorial work on the first
volume of Courant & Hilbert () and became Born’s assistant (successor
to Heisenberg and Pauli). He received his doctorate in  at the age of
twenty-two, for work which engaged the interest of Einstein. For a period of
less than a decade he contributed brilliantly to the development of quantum
mechanics—M. Born & P. Jordan, “Zur Quantenmechanik. I” Z. Physik 34,
858 (1925), which provided elaborate commentary on Heisenberg’s quantum
theory and presented the first clear indication of the central importance of
[x , p ] = i	 I , appeared only two months after that theory was announced, and
a companion paper (co-authored by Heisenberg: Z. Physik 35, 557 (1925)) laid
the foundations of what was to become quantum field theory; in  he
and Dirac (independently) created the synthesis of then-prevailing variants of
quantum mechanics which became known as “statistical transformation theory”
—but by the mid-’s his work had shifted to “quantum biology.” His Nazi
sympathies (he appears to have been something of a political opportunist)
complicated his post-war professional life, though he served – as a
member of the German Bundestag under Adenauer, and was active in the
creation of law relating to the peaceful uses of atomic energy. His early work
was very highly regarded by his peers (Pauli et al), and was often marked by
deft mathematical finesse. See Volume 17, Supplement II of the Dictionary of
Scientific Biography for more detail relating to the life and accomplishment of
this strange man, this neglected founding father of quantum mechanics.
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Spectral discreteness (such as the discreteness of the energy spectrum
assumed in the last few equations) arises—here as in the theory of musical
strings—from physically-motivated stipulations that (x|ψ) must conform to
certain side conditions, which invariably include
• single-valuedness
• normalizability

and, more contingently, may include
• boundary conditions
• periodicity conditions
• symmetry conditions.

Notice that some of these are difficult to formulate except in the language
afforded by a representation (though their physical significance must, in the
end—as all things must—be representation independent).

Expectation values can in x-representation be described by formulæ of the
form

〈A〉 =
∫ ∫

ψ∗(y)(y|A |x)ψ(x) dydx (63)

which is a special case becomes

〈X〉 =
∫ ∫

ψ∗(y)(y|X |x)ψ(x) dydx

=
∫ ∫

ψ∗(y)xδ(y − x)ψ(x) dydx

=
∫

ψ∗(x)xψ(x) dx (64)

It is from this result that we acquire the familiar statement

P (x) ≡ probability density in x-space = |ψ(x, t)|2 (65)
= (ψ|xxx |ψ) with xxx ≡ |x)(x |
= (x|ψψψ |x) with ψψψ ≡ |ψ)(ψ|

from which it follows that19

∂
∂tP + 1

i� (ψ|[H , xxx ]|ψ) = 0 (66)

This equation describes the “local conservation of probability,” and will later
be brought to more familiar form.

When at (59) we drew upon the “abstract Schrödinger equation” (25)
we lapsed tacitly into the Schrödinger picture. Results of rather different
appearance (which are in some contexts more useful) are obtained if one elects
instead to work in the Heisenberg picture . . .where observables move (unless

19 Be careful not to confuse the projection operator xxx ≡ |x)(x| with the
position operator x =

∫
|x)x dx(x|.
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they happen to commute with the Hamiltonian), and carry their eigenvectors
with them. In the Heisenberg picture we would, in place of (56), write

X(t)|x, t) = x|x, t) (67)

with20 X(t) = U –1(t)X U(t) and

|x, t) ≡ U –1(t)|x) whence (x, t| = (x|U(t) (68)

and in place of (57) write (at all times t)∫
|x, t)dx(x, t| = I and (x, t|y, t) = δ(x− y) (69)

The state ket |ψ) does now not move, but its coordinates with respect to the
moving basis do; we have (compare (58): I write |ψ)fixed in place of |ψ) for
emphasis, but will immediately abandon that device)

|ψ)fixed =
∫
|x, t) dx(x, t|ψ)fixed

which lends a new interpretation to ψ(x, t):

ψ(x, t) =




(x|ψ)t in the Schrödinger picture

(x|U(t)|ψ)

(x, t|ψ) in the Heisenberg picture

(70)

The Green’s function acquires the description

G(x, t; y, 0) = (x, t|y, 0) =
{

inner products of evolved eigenbasis
with respect to original eigenbasis (71)

which marks the starting point of some important work by Julian Schwinger
that we will have occasion to examine.21

I have now to agree with the attentive reader who has remarked that, as
it stands, (59) does not look much like the Schrödinger equation{

1
2m

(
�

i
∂
∂x

)2 + V (x)
}
ψ(x, t) = i	 ∂

∂tψ(x, t)

of the textbooks, and that (66) does not much resemble the familiar continuity
equation

∂
∂tP + ∂

∂x

[
�

2im

(
ψ∗ ∂∂xψ − ψ ∂

∂xψ
∗)] = 0

20 Since U is unitary we can write U+ and U –1 interchangeably; I find it
convenient here to use the latter notation.

21 In the meantime, see Chapter 3 in Schwinger’s Quantum Kinematics &
Dynamics (). It is typical of Schwinger that he neglects to mention that
he works in the Heisenberg picture.
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To get from here to there we must digress to acquire sharper tools for the
management of non-commutative objects (linear operators, matrices), and more
particularly for developing the implications of [x , p ] = i	 I .

Rudiments of Campbell-Baker-Hausdorff theory. The theory to which I allude
was, for the most part, ready-made by the time quantum physicists discovered
they had need of it, having been developed ∼ by mathematicians who (it is
my understanding) drew their inspiration from problems posed by the classical
theory of Lie groups/algebras. Founding fathers of the field were J. E. Campbell
(), H. F. Baker (//) and F. Hausdorff ().22 It is, if still relatively
little known, a seductive subject of broad applicability; I will try to confine my
remarks here to the most characteristic methods and most immediately useful
results.

Let A and B be any objects which can be added and multiplied. They
may be linear operators, or matrices . . .but for present purposes need carry
no such specific interpretation. Multiplication is assumed to be associative but
need not be commutative; indeed, it is management of non-commutativity that
sparks the whole enterprise. We agree to manipulate infinite series formally,
writing things like

eA = I + A + 1
2! A

2 + · · ·
( I − A)–1 = I + A + A2 + · · ·

without regard to questions of convergence (which we would be powerless to
address anyway, so simply have we equipped ourselves).

We begin with the demonstration that

eA Be−A = B + [A , B ] + 1
2! [A , [A , B ]] + · · · (72.1)

To that end we—characteristic trick—introduce a parameter , writing

F(u) ≡ euA Be−uA

Then

d
du F(u) = euA [A , B ]e−uA(

d
du

)2
F(u) = euA [A , [A , B ]]e−uA

...(
d
du

)n
F(u) = euA [A , . . . [A , [A , B ]] . . .]︸ ︷︷ ︸ e−uA

n -fold “nested commutator”

and by formal Taylor expansion about u = 0 we have

euA Be−uA = B + [A , B ]u + 1
2! [A , [A , B ]]u2 + · · ·

22 A splendid review of the field, with many references, has been published
by R. M. Wilcox: “Exponential operators and parameter differentiation in
quantum physics,” J. Math. Phys. 8, 962 (1967).
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which at u = 1 gives the identity we sought to establish.

The occurance of “nested commutators”23—which some authors24 call “Lie
brackets”—is, by the way, a characteristic feature of Campbell-Baker-Hausdorff
theory. It often proves convenient to write

{An, B} ≡
{

B : n = 0
[A , . . . , [A , [A , B ]] . . .] : n = 1, 2, . . .

in which notation (72.1) becomes

eA Be−A = {eA , B}

If f(···) refers to any formal power series, then it is elementary that

eA f(B)e−A = f(eA Be−A )

which in the case f(···) = exp(···) becomes

eA eB e−A = exp
{
eA Be−A

}
= eB+[A ,B ]+ 1

2 [A ,[A ,B ]]+··· (72.2)

Suppose it were the case that

special circumstance : A and B commute with [A , B ] (=)

The infinite series then truncates; we have eA eB e−A = eB+[A ,B ] = e[A ,B ] · eB

giving25

eA eB = e[A ,B ] · eB eA (=72.3)

Let (=) be expressed

[A , C ] = [B , C ] = 0 with C ≡ [A , B ] (==)

and note that the left side of (=72.3) is “AB-ordered:” all A ’s stand to the left
of all B ’s. Equation (=72.3) describes the result of using

A B = B A + C (73.4)

and (==) to pull all A ’s through to the right, so as to achieve the reversed
“BA-ordering.” Reordering can be tedious business, and the design of rational
procedures for accomplishing such an objective is a problem area central to the
present theory.

23 Commutators of commutators . . . are “nested” if and only if all [ ’s stand
to the left of all ]’s: [•[•[•[•, •]]]] is nested, but [[•[•, •]], [•, •]] isn’t.

24 See W. Magnus, “On the exponential solution of differential equations for
a linear operator,” Comm. Pure & Appl. Math. 7, 649 (1954)

25 I will use = to flag equations in which [A , [A , B ]] = [B , [A , B ]] = 0 are
presumed.
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Expansion of eA+B presents A ’s and B ’s in all orders:

eA+B = I + (A + B)
+ 1

2! (A A + A B + B A + B B)
+ 1

3! (A A A + A A B + A B A + B A A

+ B B A + B A B + A B B + B B B) + · · ·

What can one say—in general, and in the special case (=)—about the
AB-ordered (else BA-ordered) form of the expression on the right? Zassenhaus,
in unpublished work first reported by Magnus, obtained

eA+B = eA eB eC2eC3 · · · (73.5)

with

C2 = − 1
2 [A , B ]

C3 = 1
6 [A , [A , B ]] + 1

3 [B , [A , B ]]
...

Cn = recursively-determined linear combination of nested commutators

In the special case (=) the Cn with n > 2 all vanish, leaving

eA+B =


 e−

1
2 C · eA eB : AB-ordered

e+ 1
2 C · eB eA : BA-ordered

(=73.6)

which were first obtained by W. O. Kermack & W. H. McCrea.26 This result
will assume such importance that I give now a direct derivation, along lines
devised by N. H. McCoy.27

Let us agree to write

A

[
f(A,B)

]
B

= result of AB-ordered substitution into f(A,B) (73.7)

Thus

A

[
eA+B

]
B

= eA eB but
B

[
eA+B

]
A

= eB eA

The idea, now, is to look for a f(A,B) such that

F ≡ eA+B =
A

[
f(A,B)

]
B

Clearly ∂
∂ A F = ∂

∂ B F = F so it must be the case that ∂
∂Af = ∂

∂B f = f . The
most general such f(A,B) is

f(A,B) = KeA+B

26 “On Professor Whittaker’s solution of differential equations by definite
integrals,” Proc. Edingurgh Math. Soc. (Second Series) 2, 205 (1931).

27 “Certain expansions in the algebra of quantum mechanics,” loc cit 3, 118
(1932).



Rudiments of Campbell-Baker-Hausdorff theory 33

Our problem, therefore, is to discover the K for which eA+B = KeA eB is a
valid identity, where K is interpreted now to mean “an object which commutes
with both A and B ,” and might better be written K . We resort again to the
“parameter trick” to get analytical leverage on the problem, writing

K(u) = eu(A+B )e−uB e−uA

Then

d
duK = eu(A+B )(A + B)e−uB e−uA

− eu(A+B ) Be−uB e−uA − eu(A+B )e−uB Ae−uA

= eu(A+B )[A , e−uB ]e−uA after simplification

[A , e−uB ] = −uCe−uB as will be shown in a moment

= −uCK

implies
K(u) = K(0)e−

1
2u

2 C

= e−
1
2u

2 C since clearly K(0) = 1

So we have eu(A+B ) = e−
1
2u

2 C euA euB , which gives back (=73.6) at u = 1. It
remains only to take care of a detail, as promised:

Drawing upon (44.3) we have [A , B2 ] = [A , B ]B + B [A , B ] which in the
presence of (=) becomes [A , B2 ] = 2 [A , B ]B and by easy extension (induction)
gives [A , Bn ] = n[A , B ]Bn−1 whence

[A , eB ] = +CeB (=73.8)

which readily gives the result used above. “Dualization” (interchange A � B
and reverse the sign of the commutator: C → −C) supplies

[B , eA ] = −CeA

in this instance, and is often useful: given an identity, it permits one to obtain
a second (usually different, and sometimes more interesting) identity for free.
The identity (=73.8) can be written as a “shift rule”

e−B AeB = A + C (=73.9)

from which it follows readily that e−B AneB = (A + C)n whence

e−B f(A)eB = f(A + C)

We have barely scratched the surface of a subject which over the years has
seduced more than its share of mathematicians and physicists,28 and which we

28 For Richard Feynman’s contribution to the subject see “An operator
calculus having applications to quantum electrodynamics,” Phys. Rev. 84, 108
(1951).
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may have occasion to revisit. Here I present only one further result, of which
we will have physical need, and which serves to illustrate the remarkable power
of McCoy’s method:

e(α1 A+β1 B )(α2 A+β2 B ) = Ke
1
2P A2

eQA :B e
1
2RB2

(=73.10)

where

P =
1− e−DC

C(α1β2 − α2β1e−2DC )
· α1α2(1 + e−DC )

Q = ditto · (α1β2 + α2β1e
−DC )

R = ditto · β1β2(1 + e−DC )

K =

√
D

α1β2 − α2β1e−2DC

with D ≡ α1β2 − α2β1, and where

eQA :B ≡
A

[
eQAB

]
B

Amazingly, this complicated-looking result29 says very sharp things about the
quantum physics of oscillators, and its utility in a variety of special cases has
been pointed out by Schwinger.30,31

Momentum representation. The fundamental commutation relation (52) can be
expressed

[x , 1
i�ξ p ] = ξ I

where ξ is a parameter to which we may assign the dimension [ξ ] = length (thus
to render 1

i�ξ p dimensionless). As an instance of the “shift rule” (=73.9) we
therefore have

x T(ξ) = T(ξ)(x + ξ I) with T(ξ) ≡ e−
i
�
ξ p unitary (74)

Application to |x) gives

x T(ξ)|x) = (x + ξ)T(ξ)|x) (75)

from which we infer

T(ξ)|x) = |x + ξ) : T(ξ) “translates” along the x-spectrum (76)

29 A detailed derivation can be found in “An operator ordering technique with
quantum mechanical applications,” Notes for a Reed College Physics Seminar
presented  October .

30 “On Angular Momentum,” US Atomic Energy Commission publication
NY0–3071 (1952), Appendix A. The complexity of (=73.10) tends to evaporate
in the interesting special cases.

31 Further discussion of Campbell-Baker-Hausdorff theory can be found in
classical dynamics (), Chapter 1, pp. 22–35; classical mechanics
(), pp. 282–287.
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Notice now that we can, on the one hand, write

T(ξ)|ψ) =
∫∫
|x) dx (x|e− i

�
ξ p |y)ψ(y) dy

while on the other hand (assuming whatever may be necessary to make the
argument work)

T(ξ)|ψ) =
∫

T(ξ)|y) dy (y |ψ)

=
∫
|y + ξ) dy ψ(y)

=
∫
|x) dxψ(x− ξ) by change of variables

=
∫
|x) dx e−ξ

∂
∂x ψ(x) by Taylor’s theorem

=
∫∫
|x) dy δ(y − x)e−ξ

∂
∂y ψ(y) dy

We possess now two descriptions of the same thing, which upon comparison
(equating similar powers of ξ) give

(x|pk |y) = δ(y − x)
(

�

i
∂
∂y

)k (77)

From this result it follows in particular that

(ϕ|p |ψ) =
∫∫

(ϕ|x) dx (x|p |y) dy (y |ψ)

=
∫∫

ϕ∗(x) dx δ(y − x)
(

�

i
∂
∂y

)
ψ(y) dy

=
∫

ϕ∗(x)
(

�

i
∂
∂x

)
ψ(x) dx (78)

Now introduce the momentum eigenbasis, writing

p |p) = p|p) with
∫
|p) dp (p| = I and (p|q) = δ(p− q) (79)

Side conditions—imposed upon (x|ψ) whence upon (x|p)—may force the
momentum spectrum to be discrete (think of the particle-in-a-box), of at least
to have a discrete component; in such cases one might write

∑
|p)(p| = I or even

∑∫
|p)(p| = I and (p|q) = δpq

but we will assign such elastic meanings to
∫

and δ as to make those notational
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distractions unnecessary, except on rare occasions when special emphasis seems
in order. Evidently

(x|p |p) = p(x|p)

On the other hand, (77) supplies

(x|p |p) =
∫

(x|p |y) dy (y|p) = �

i
∂
∂x (x|p)

So (x|p), looked upon as a p -indexed function of x, satisfies d
dx (x|p) = i

�
p(x|p),

and has therefore the form

(x|p) = g(p) · e i
�
px

Therefore

(p |q) =
∫

(p|x) dx (x|q) = g∗(p)g(q) ·
∫

e−
i
�
(p−q)x dx

But the Fourier integral formula f(t) = 1
2π

∫
dk

∫
f(s)e−ik(t−s)ds can (on the

presumption that integration in reversed order is formally allowed) be expressed

δ(s− t) = 1
2π

∫
e−i (s−t)kdk

so we have
(p|q) = g∗(p)g(q) · hδ(p− q)

= δ(p− q) if we set g(p) = 1√
h
eiφ(p)

Without loss of generality we set the phase factor φ(p)→ 0 and obtain

(x|p) = 1√
h
e

i
�
px (80)

We now have

|p) =
∫
|x) dx (x|p) = 1√

h

∫
e+ i

�
px|x) dx

|x) =
∑∫
|p) dp (p |x) = 1√

h

∑∫
e−

i
�
px|p) dp


 (81)

in description of the relationship between the
{
|x)

}
-basis and the

{
|p)

}
-basis,

giving

Ψ(p) ≡ (p |ψ) = 1√
h

∫
e−

i
�
pxψ(x) dx with ψ(x) ≡ (x|ψ)

ψ(x) ≡ (x |ψ) = 1√
h

∑∫
e+ i

�
pxΨ(p) dp with Ψ(x) ≡ (p |ψ)


 (82)
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We have at this point established that the familiar association

(x|ψ)←−−−−−−−−−−−−−−−−−−→
Fourier transformation

(p |ψ)

was forced upon us by the fundamental commutator [x , p ] = i	 I .

Or, to be more precise, forced modulo some refined slip and slide . . .which
I now digress to describe. It is clearly the case that

i) P ≡ p +φ′(x) will be self-adjoint if φ(···) is real-valued, and satisfies
the same commutation relation as p :

[x , p ] = i	 I ⇐⇒ [x , P ] = i	 I

ii) If
{
|x)

}
comprises an orthonormal eigenbasis of x then so also does{

e−
i
�
φ(x)|x)

}
, provided φ(···) is real.

What we show is that those two remarks are complementary aspects of the
same remark. Let D and x be the operators defined

D : f(x) −→ Df(x) ≡ f ′(x) : differrentiation
x : f(x) −→ x f(x) ≡ x · f(x) : multiplication by x

From D xf = x Df + f (all f) we have [D , x ] = I , and can argue either from
this algebraic fact or from Deφ( x )f = eφ( x )

{
Df + φ′(x)f

}
to the “generalized

shift rule”
e−φ( x ) Deφ( x ) = D + φ′(x)

which (compare (=73.9)) holds as an operator identity, and entails32

e−
i
�
φ( x ) p e

i
�
φ( x ) = p + φ′(x)

The operator W ≡ e−
i
�
φ( x ) is manifestly unitary (any real φ(···)), and permits

us to write
X = W x W –1 = x

P = W P W –1 = p + φ′(x)

}
(83)

Moreover, if x |x) = x|x) and |X) ≡ W |x) then X |X) = x|X). These simple
conclusions illustrate the general proposition that

all realizations of the fundamental commutation
relations [x , p ] = i	 I are unitarily equivalent .

They anticipate the idea central to gauge field theory, and will acquire
importance also when we look to the problem of “quantization in curvilinear
coordinates.”

32 Multiply by �

i and notice that [�

i D , x ] = [p , x ].
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We are in position now to cast some of the results in hand into more familiar
form. For example: Whatever may be the resolution of the “correspondence
problem” A(x, p) ←→ A posed at (12), we certainly expect—and on physical
grounds require—that it will send

H(x, p) = 1
2mp2 + U(x) ←→ H = 1

2m p2 + U(x) (84)

Drawing upon (77) we have

(x|H |y) = δ(y − x)
{

1
2m

(
�

i
∂
∂y

)2 + U(x)
}

(85)

which when introduced into (59) gives the equation{
1

2m

(
�

i
∂
∂y

)2 + U(x)
}
ψ(x, t) = i	 ∂

∂tψ(x, t) (86)

which marked Schrödinger’s point of departure.

Or look back again to (66), where we encounter the expression

(ψ|[H , xxx ]|ψ) = (ψ|H |x)ψ(x, t)− ψ∗(x, t)(x|H |ψ)

= −
{
ψ∗(x, t)(x|H |ψ)− complex conjugate

}
Using (85) in

(x|H |ψ) =
∫

(x|H |y)ψ(y, t) dy

we have

=
{

1
2m

(
�

i
∂
∂x

)2 + U(x)
}
ψ(x, t)

and with this information (66) is readily brought to the form

∂
∂tP +∇∇∇···JJJ = 0 (87)

JJJ ≡ �

im

{
ψ∗∇∇∇ψ − ψ∇∇∇ψ∗

}
in which “conservation of probability” is more commonly expressed.

The “mixed representation trick”. Suppose we were in position to write

A(x, p)
↓
A =

x

[
Axp(x, p)

]
p

(88)

For the same reason that—with x acting to the left and p acting to the right—
(x|x p |p) = xp(x|p), we would then have

(x|A |p) = Axp(x, p) · (x|p) = 1√
h
Axp(x, p)e

i
�
px (89)
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and find ourselves in position to write (for example)

(x|A |y) =
∫

(x|A |p) dp (p |y)

= 1
h

∫
Axp(x, p)e

i
�
p(x−y) dp (90.1)

(q|A |p) =
∫

(q |x) dx (x|A |p)

= 1
h

∫
Axp(x, p)e

i
�
(p−q)x dx (90.2)

〈A〉 = (ψ|A |ψ) =
∫

(ψ|x) dx (x|A |p) dp (p |ψ)

= 1
h

∫∫
ψ∗(x)Axp(x, p)e

i
�
pxΨ(p) dxdp (90.3)

Though such formulæ are infrequently encountered in the literature—for, I
suppose, the reason that they presume solution of the operator ordering problem
—they are, in my experience, often very useful, and will enter repeatedly future
discussion.

Look to the free particle Green’s function; i.e., to (see again (60))

G(x, t; y, 0) = (x|U(t)|y) with U(t) = e−
i
�

1
2m p2t (91.1)

The ordering problem is in this case trivial

U(t) =
x

[
e−

i
�

1
2mp2t

]
p

(91.2)

so as an instance of (90.1) we have

G(x, t; y, 0) = 1
h

∫
e−

i
�

1
2mp2t e

i
�
p(x−y) dp (91.3)

= 1
h

∫
e−(ap2+2bp) dp with a = (i/	) t

2m , b = −(i/	)x−y2

= 1
h

√
π
a eb

2/a provided �[a] > 0

To achieve compliance with the side condition we
• require t > 0 (quantum dynamics is predictive, not retrodictive) and33

• place 	 on the upper half of the “complex 	 plane,” so as to have

i
	

= lim
ε↓0

{
i

	 + iε
= ε

	2 + ε2
+ i

	

	2 + ε2

}
(91.4)

33 This is one of Feynman’s many tricks: see. . . . . .Variants of the idea—the
general effect of which is to associate physical functions with the boundary values
of analytic functions—have become commonplace in a great variety of contexts.
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We then obtain

Gfree(x, t; y, 0) =
√

m
iht

{
i
	

m
2

(x− y)2

t

}
(91.5)

This result will become progressively prettier (and acquire ever greater
importance) as we proceed, and can be obtained by a variety of simpler means—
we might, for example, write

Gfree(x, t; y, 0) =
∫∫

(x|p) dp (p|e− i
�

1
2m p2t|q) dq (q |y)

=
∫∫

(x|p) dp e− i
�

1
2m q2tδ(p− q) dq (q |y)

which returns us to (91.3) without allusion to the “ordering problem”—but the
success of the method which led us to (91.5) is no fluke, as I demonstrate with
a second example:34

Look to the harmonic oscillator Hamiltonian

H = 1
2m (p2 + m2ω2 x2 ) (92.1)

and notice that McCoy’s theorem (=73.10) supplies

eA2+B2
=
√

sec 2C exp
{

tan 2C
2C A2

}
exp

{
1−sec 2C

C A:B
}

exp
{

tan 2C
2C B2

}
We therefore have

U(t) = e−
i
�

1
2m (p2+m2ω2 x2 ) t

=
√

secωt e−
i
�

mω
2 tanωt· x2 e−

i
�
(1−secωt)· x :p e−

i
�

1
2mω tanωt·p2 (92.2)

So were are led again to a Gaussian integral, which after some manipulation
gives

Gosc(x, t; y, 0) =
√

mω
ih sinωt exp

{
i
	
mω

[ (x2 + y2) cosωt− 2xy
2 sinωt

]}
(92.3)

from which we recover (91.5) in the limit ω ↓ 0. As is well known, the oscillator
Hamiltonian (92.1) can also be written in “displaced factored form”

H = = 	ω(a+ a + 1
2 I) with a ≡

√
mω/2	 (x + i 1

mω p) (92.4)

a+ =
√

mω/2	 (x − i 1
mω p)

34 Omitted details can be found in some seminar notes previously cited.29

The method is due to Schwinger; as Bernoulli remarked on reading some of
Newton’s unsigned work, “One can recognize the lion by his paw.”
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where [x , p ] = i	 I entails [a , a+] = I and where we notice that the factors a
and a+ are not self-adjoint . It follows again from McCoy’s theorem that

euAB = exp
{1− euC

C
A:B

}
so we have

U(t) = e−iω( a+ a+ 1
2 I )t = e−i

1
2ωte−iωt a+ a

= e−i
1
2ωt exp

{
(e−iωt − 1)a+ : a

}
=

∑
n

e−
i
�
(n+ 1

2 )�ωt 1√
n!

(a+)ne− a+: a 1√
n!

(a)n (92.5)

Comparison with (31)
U(t) =

∑
n

e−
i
�
Ent|n)(n|

gives

En = (n + 1
2 )	ω and |n)(n| = 1√

n!
(a+)ne− a+: a 1√

n!
(a)n (92.6)

= 1√
n!

(a+)n |0)(0| 1√
n!

(a)n

|0)(0| = e− a+: a

↓
|n) = 1√

n!
(a+)n |0) (92.7)

It is not difficult to show that

B euA :B = (1− uC) euA :B B

and with the aid of this information we have

a |0)(0| = a e− a+: a = (1− 1)e− a+: a a = 0

which shows that a annihilates the ground state:

a |0) = 0 (92.8)

It is now a relatively straightforward matter35 to construct the familiar oscillator
eigenfunctions

ψn(x) = (x|n) (92.9)

which permit one to write

Gosc(x, t; y, 0) =
∑
n

e−
i
�
(n+ 1

2 )�ωtψn(x)ψ∗(y) (92.10)

But valuable information can be obtained in a representation-independent way,

35 See Griffiths, §2.3.1.
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as I now illustrate: it follows immediately from (92.7) that

a+ |n) =
√
n + 1 |n + 1) (92.11a)

while a |n) = a 1√
n!

(a+)n |0) = 1√
n!

(a+)n a |0) + n√
n

1√
(n−1)!

(a+)(n−1) |0) gives

a |n) =
√
n |n− 1) (92.11b)

and it is in view of these facts that one calls a+ and a “ladder operators”
(“step-up” and “step-down” operators, respectively). The self-adjoint operator
N ≡ a+ a and its nameless companion a a+ have the properties

N |n) = n |n)
a a+|n) = (n− 1)|n)

}
(93)

for which reason N is called the “number operator.”

Some commentary is in order: (92.10) is an instance of (31), and is as
old as quantum mechanics itself. That Gosc(x, t; y, 0) admits of the alternative
description (92.3) is a fact which—though it had been previously remarked
by an occasional physicist (and was known to mathematicians as “Mehler’s
theorem” already in the 19th Century)—was first emphasized by Feynman,
for reasons which I will later discuss in detail. For the moment I must be
content to introduce this evidence that (92.3) is not so obscurely bizarre, and
its introduction not nearly so pointless . . . as might at first appear. The function

x(t) =
[
x0 sinωt1 − x1 sinωt0

sinω(t1 − t0)

]
cosωt−

[
x0 cosωt1 − x1 cosωt0

sinω(t1 − t0)

]
sinωt

satisfies ẍ + ω2x = 0, x(t0) = x0 and x(t1) = x1, so describes the dynamical
path

(x1, t1)←−−−−−−−−−−−−
x(t)

(x0, t0)

of an harmonic oscillator. Dropping that x(t) and the associated ẋ(t) into

S(x1, t1;x0, t0) =
∫ t1

t0

{
1
2mẋ2(t)− 1

2mω2x2(t)
}
dt

we obtain the dynamical action associated with that path, and find it to be
given by

S(x1, t1;x0, t0) = mω
[ (x2

1 + x2
0) cosω(t1 − t0)− 2x1x0

2 sinω(t1 − t0)

]}
(94.1)

which after notational adjustments (t0 �→ 0, t1 �→ t, x0 �→ y, x1 �→ x) yields
an expression presented in the exponent of (92.3). Moreover

∂2S(x1, t1;x0, t0)
∂x1∂x0

= − mω
sinω(t1 − t0)

(94.2)
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yields (after those same adjustments) a factor which appears under the radical.
So (92.3) can be written in a form

G(x1, t1;x0, t0) =

√
i
h

∂2S(x1, t1;x0, t0)
∂x1∂x0

exp
{

i
�
S(x1, t1;x0, t0)

}
(95)

which has the “look of generality” about it . . . and raises this issue: What can
such an expression—assembled, as it is, from classical objects—have to do with
the spectral representation of the quantum propagator?

The methods applied above to the oscillator can be used to construct a
similarly complete account of the quantum mechanics of free fall

H = 1
2m p2 + mg x (96)

but I postpone discussion of the interesting details.

Suppose, given H(x, p) −→ H , we were in position to write

eH =
x

[
eH(x,p)

]
p

(97.1)

In straightforward generalization of (91.3) we would then have

G(x, t; y, 0) = 1
h

∫
exp

{
i
	

[
p
x− y

t
−H(x, p)

]
t

}
dp (97.2)

and if one “squints” the expression [etc.] resembles the expression on the right
side of

L(x, ẋ) = p ẋ−H(x, p)

which, in collaboration with ẋ = ∂H/∂p, serves in classical mechanics to achieve

H(x, p) −−−−−−−−−−−−−−−−−−−−→
Legendre transformation

L(x, ẋ)

It will be awhile before this green fruit becomes ripe enough to pick . . .but will
be worth the wait.

Gaussian representation of the delta function and its derivatives. When Dirac
allowed himself to write36∫ +∞

−∞
δ(x) dx = 1

δ(x) = 0 for x �= 0

—which he did in order to achieve∫ +∞

−∞
f(x)δ(x− a) dx = f(a)

36 Principles of Quantum Mechanics, §15 in both the 3rd and 4th editions.



44 Introductory concepts, methods & issues

—he was perfectly well aware (and explicitly stated) that no such “function”
δ(x) can exist, except as the idealized limit of such perfectly nice functions as
the familiar Gaussian37

g(x− a; ε) ≡ 1
ε
√

2π
exp

{
− 1

2

[
x−a
ε

]2} (98)

In probabilistic contexts one would say that g(x − a; ε) describes a normal
distribution—a “bell-shaped curve” which is centered at x = a and becomes
more sharply localized as ε decreases. One has∫ +∞

−∞
g(x− a; ε) dx = 1 : all ε > 0

lim
ε↓0

g(x− a; ε) = 0 for x �= 0

and expects therefore to have

lim
ε↓0

∫ +∞

−∞
f(x)g(x− a; ε) dx = f(a)

for all reasonable functions f(x). These equations provide a concrete realization
of Dirac’s elementary idea, and show that the term “δ -function” refers not to a
“function” but to a program: δ(x) lives always in the shade of a real or implied

∫
because it’s intent is to assign value to the limit of an ε-parameterized sequence
of integrals. His notational objective was simply to remove the prolixity from
a situation which seemed to him pretty obvious (but which got von Neumann
all steamed up).

Evidently ∫ x

∞
δ(y − a) dy = θ(x− a) ≡

{ 0 : x < a
1 : x > a

so that formally
δ(x− a) = d

dxθ(x− a)

The “step function” θ(x−a) is in some respects a more elementary object than
δ(x− a), and I have argued elsewhere38 that it is from properties of the former

37 Alternatives such as

g1(x− a; ε) ≡ 1
2ε sech2

[
x−a
ε

]
g2(x− a; ε) ≡ sin[(x− a)/ε]

π(x− a)

are available in infinite variety, and sometimes lend themselves more naturally
to particular applications, but it serves my present purposes to look only to
implications of the “Gaussian representation of the δ-function.”

38 “Simplified production of Dirac delta function identities,” ().
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that properties of the latter are most easily extracted. What I had there in
mind were formal statements such as appear in the following list:

δ(−x) = δ(x)
xδ(x) = 0
δ(ax) = a−1δ(x) : a > 0

δ(x2 − a2) = 1
2a
−1

{
δ(x− a) + δ(x + a)

}
: a > 0∫

δ(a− x) dx δ(x− b) = δ(a− b)
f(x)δ(x− a) = f(a)δ(x− a)

At present, however, I have interest in (because need of) certain derivative
properties of the delta function.

What can one mean by the “derivative” of an object so singular as δ(x)?
Formal integration-by-parts supplies∫

f(x)δ′(x− a) dx = −
∫

f ′(x)δ(x− a) dx

= −f ′(a)∫
f(x)δ′′(x− a) dx = (−)2f ′′(a)

...

And if we work in Gaussian representation (or any other similarly differentiable
representation) it becomes entirely natural to write

δ(n)(x− a) = lim
ε↓0

(
d
dx

)n
g(x− a; ε)

where it is understood that limε↓0 is to be taken only after the
∫

-process has
been completed. It is at this point that the special merit of the Gaussian
representation come first into view:

The (monic) Hermite polynomials Hen(x) can be defined39

Hen(x) ≡ (−)ne
1
2x

2( d
dx

)n
e−

1
2x

2
(99)

so we have

(
− d

dx

)n
e−

1
2x

2
= Hen(x) · e− 1

2x
2

with




He0(x) = 1
He1(x) = x
He2(x) = x2 − 1

...

39 Beware the alternative definition Hn(x) ≡ ex
2( d

dx

)n
e−x

2
which is very

frequently encountered (Griffiths, p. 41; Spanier & Oldham, Atlas of Functions,
Chapter 24), and sometimes more useful. The polynomials Hen(x) are treated
on pp. 80–82 of Magnus & Oberhettinger, Formulas and Theorems for the
Functions of Mathematical Physics.
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which after a few elementary adjustments gives(
− d

dx

)n
g(x− a; ε) = 1√

2π

(
1
ε
)n+1

Hen
(
x−a
ε

)
exp

{
− 1

2

[
x−a
ε

]2}
Pulling this information together, we have

f (n)(a) =
∫

f(x)
[
(−)nδ(n)(x− a)

]
dx

= 1√
2π
· lim
ε↓0

(
1
ε
)n+1

∫
f(x)Hen

(
x−a
ε

)
exp

{
− 1

2

[
x−a
ε

]2}
dx (100)

↓

f(a) = 1√
2π
· lim
ε↓0

(
1
ε
)1

∫
f(x) exp

{
− 1

2

[
x−a
ε

]2}
dx

f ′(a) = 1√
2π
· lim
ε↓0

(
1
ε
)2

∫
f(x) ·

(
x−a
ε

)
· exp

{
− 1

2

[
x−a
ε

]2}
dx

f ′′(a) = 1√
2π
· lim
ε↓0

(
1
ε
)3

∫
f(x) ·

[(
x−a
ε

)2 − 1
]
· exp

{
− 1

2

[
x−a
ε

]2}
dx

...

which will be of use to people who, in the course of their mathematical
wanderings, encounter (as we are destined to encounter) expressions such as
appear on the right sides of the preceding equations—expressions to which
they can now assign simple names and interpretations.40

The equations obtained above refer to what can in general terms be called
the asymptotic evaluation of integrals—a subject pioneered by Laplace more
than a century before Dirac appeared on the scene. Laplace was motivated to
write

I(λ) =
∫ x1

x0

f(x)eλg(x) dx

and, on the assumption that g(x) is bounded on [x0, x1] and maximal at the
interior point x = a, to ask “What can one say about I(λ) as λ becomes large?”
Expanding about a (where, by assumption, g ′(x) vanishes) he wrote

I(λ) =
∫ x1

x0

f(x)eλ
{
g(a)+ 1

2 g
′′(a)(x−a)2+···

}
dx

with g ′′(a) < 0 and argued that when λ is large the predominant contribution
to the integral must arise in the immediate neighborhood of x = a. So he had

I(λ) ∼
∫ a+ε

a−ε
f(a)eλg(a)e−

1
2λ|g

′′(a)|(x−a)2 dx

∼ f(a)eλg(a)

∫ +∞

−∞
e−

1
2λ|g

′′(a)|(x−a)2 dx

40 For more detailed discussion of the material sketched above, see quantum
mechanics (), Chapter 1, pp. 70–74. The Hermite polynomials can be
given natural (non-polynomial) meaning even when n is not an integer; in
“Laplacian operators of eccentric order” () I use this fact to construct a
novel approach to the fractional calculus.
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on which basis he (as a founding father of probability theory, and possibly the
first person to know that

∫ +∞
−∞ e−x

2
dx =

√
π ) was placed in position to write

lim
λ→∞

∫ x1

x0

f(x)eλg(x) dx ∼
[
− 2π

λg ′′(a)

]1
2

f(a)eλg(a) (101.1)

which is known as “Laplace’ asymptotic expansion formula,” and pretty clearly
captures the germ of Dirac’s idea.

laplace’ method has been extended—often by physicists (Stokes, Kelvin,
Debye, others) working on a variety of physical problems (geometrical limit of
physical optics as frequency becomes large, thermodynamics limit of statistical
mechanics as the number of particles becomes large, classical limit of quantum
mechanics as 1/	 becomes large)—in several directions, by arguments which
differ in their details, but which lead to results which are remarkably similar.
Kelvin’s method of stationary phase leads, for example, to the conclusion
that if g(x) has a solitary stationary point at x = a (i.e., if g ′(a) = 0 and
g ′′(a) �= 0) then (taking the upper or lower sign according as g ′′(a) ≷ 0)

lim
λ→∞

∫ x1

x0

f(x)eiλg(x) dx ∼
[

2π
λg ′′(a)

]1
2

f(a)ei[λg(a)±π
4 ] (101.2)

. . . the argument now being that the integrand in∫ +∞

−∞
ei

1
2λg
′′(a)(x−a)2 dx “buzzes to extinction” at points away from x = a

The subject rapidly becomes technically demanding when pursued in rigorous
detail, but we will need to draw (informally) upon only its simplest elements.41

Classical Legendre transformations from quantum Fourier transformations. We
say already at (82) that—in consequence ultimately of [x , p ] = i	 I—the “wave
functions” ψ(x)≡(x|ψ) and Ψ(p)≡(p|ψ) are Fourier transforms of one another.
That

(ψ|ψ) =
∫

(ψ|x) dx (x|ψ) =
∫

(ψ|p) dp (p |ψ) = 1 (102)

is in Dirac notation almost trivial, though in Fourier transform theory the
central equality is attributed to “Parseval’s theorem,” which can be argued to
be the well-spring of the entire subject.42

41 For a good brief account of the essentials see Chapter 2 in A. Erdélyi,
Asymptotic Expansions (), which is the Dover publication of some brief
lecture notes. Elaborately detailed accounts of the theory can be found in
Chapter 6 of C. Bender & S. Orszag’s Advanced Mathematical Methods for
Scientists and Engineers () and in Chapters 3 & 4 of F. Olver, Asymptotics
and Special Functions ().

42 See P. M. Morse & H. Feshbach, Methods of Theoretical Physics (),
pp. 456–462.
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Let (x|ψ) and (p |ψ) be displayed in polar form

(x|ψ) = R(x) e
i
�
S(x) and (p |ψ) = A(p) e

i
�
B(p) (103)

in which notation (82) reads

A(p) e
i
�
B(p) = 1√

h

∫
R(y) e

i
�
[S(y)−py] dy

Let x be defined by the condition ∂
∂y [S(y)− py ] = 0; i.e., let x be the solution

(assumed here to be unique) of p = S′(x). By functional inversion we have

p = S′(x)
↓
x = x(p)

and, drawing upon (101.2), find that we can, in the “classical limit” 1/	→∞,
write

A(p) e
i
�
B(p) ∼

[
1

S′′(x)

]1
2

R(x) e
i
�
[S(x)−px± 1

8h] with x→ x(p) (104.1)

where the ± hinges on S′′(x) ≷ 0. Evidently B(p) results from eliminating x
between the two equations

B(p) = S(x)−px± 1
8h

� (104.2)
p = d

dxS(x)

and so is—if we may be allowed to abandon the dangling ± 1
8h, which arose

from writing iπ4 = i
�

2π�

8 —precisely the Legendre transform of S(x).

Had we worked from the inverse Fourier transform (i.e., from the other half
of (82)) we would by the same argument have obtained

R(x) e
i
�
S(x) ∼

[
1

B′′(p)

]1
2

A(p) e
i
�
[B(p)+px∓ 1

8h] with p→ p(x) (105.1)

whence

S(x) = B(p)+xp∓ 1
8h

� (105.2)
x = − d

dpB(p)

where the sign-reversal will be explained in a moment. The minus sign which
famously distinguishes a Fourier transform from its inverse is seen here to be
reflected in the sign which distinguishes a Legendre transform from its inverse.
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Compare (105.1) with this simple rewrite of (104.1):

R(x) e
i
�
S(x) ∼

[
1

S′′(x)

]− 1
2

A(p) e
i
�
[B(p)+px∓ 1

8h]

We would at the same time account for the sign-reversal (in the exponent) and
establish consistency with (105.1) if we could show that S′′(x)B′′(p) = −1. But
this follows immediately from

S′′ = dp

dx
and B′′ = −dx

dp

One can, on the basis of the preceding discussion (and with high informality),
assert that

Fourier transformation ∼ e
i
�
(Legendre transformation) (106)

Classical /short-time asymptotics of Green’s function. Look back in this light
to the description (97.2) of the Green’s function G(x, t; y, 0). In the classical
limit 	 ↓ 0 that “quantum mechanics becomes classical” (whatever that might
mean) we might plausibly expect (and this expectation will later be borne out)
to have H(x, p)→ H(x, p), and in that approximation to be able to write

G(x, t; y, 0) ∼ 1
h

∫
exp

{
i
	

[
p
x− y

t
−H(x, p)

]
t

}
dp

Let t be small, and to emphasize the velocity-like meaning which (x−y)/τ then
assumes write v ≡ (x− y)/τ . Then

G(x, τ ; y, 0) ∼ 1
h

∫
exp

{
i
	

[
p v −H(x, p)

]
τ

}
dp (107)

The idea now is to use (101.2)—the “method of stationary phase”—to obtain
an asymptotic approximation to the integral. By way of preparation we solve
∂
∂p [pv−H(x, p)] = v− ∂H

∂p = 0 (which on v �→ ẋ would become one of Hamilton’s
equations!) to obtain p = p(x, v), whence

G(x, τ ; y, 0) ∼
[

1
−hH ′′(x, p)

]1
2

e
i
�
[{pv−H(x,p)}τ± 1

8h] with p = p(x, v)

where H ′′ means ∂2H/∂p∂p. For systems of “standard type”

H = 1
2mp2 + U(x)

we have H ′′ = 1
m > 0, and can write

G(x, τ ; y, 0) ∼
[

m
ihτ

]1
2 e

i
�
{pv−H(x,p)}τ with p = mv (108)
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But

L(x, v) = pv −H(x, p)
� (109.1)
v = ∂

∂pH(x, p)

is precisely the Legendre transformation which in classical mechanics leads from
the Hamiltonian to the Lagrangian, and for systems of standard type supplies

= 1
2mv2 − U(x)

= m
2 [(x− y)/τ ]2 − U(x) (109.2)

whence
G(x, τ ; y, 0) ∼

[
m
i�τ

]1
2 1√

2π
e−

1
2

m
i �τ (x−y)2 · e− i

�
U(x)τ (110)

which merits several kinds of comment:

• If we identify
[
i�τ
m

] 1
2 with the ε in (98) then the factor up front becomes

just the Gaussian representative of δ(x − y), for reasons traceable in part
to the circumstance that p enters squared into H(x, p).

• 	 and τ enter into that factor as an 	τ -package: the “classical” (small 	)
and “short-time” (small τ) asymptotes have come into alignment. Also a
part of the enlarged package is m: we could as well speak of a “large mass”
asymptote.

Let (110) be written

G(x, τ ; y, 0) ∼
[

m
2πi�τ

]1
2 · e i

�
S0(x,τ ;y,0)

with S0(x, τ ; y, 0) ≡ Lτ = 1
2m(x− y)2/τ −U(x). Then ∂2S0/∂x∂y = −m/τ

puts one in position to write

G(x, τ ; y, 0) ∼
[
i
h

∂2S0
∂x∂y

]1
2 · e i

�
S0(x,τ ;y,0)

which is of a form encountered already at (95). What kind of an action-like
thing is S0? If m is to move from y to x in vanishingly brief time τ then it must
move briskly. In the limit we expect the motion to be, in the approximation
that kinetic energy� potential energy, essentially free

x(t) = y + [(x− y)/τ ]t + τ · (correction terms)

In that approximation the dynamical action becomes

S(x, τ ; y, 0) =
∫ τ

0

Ldt = m
2τ (x− y)2 −

∫ τ

0

U
(
y + [(x− y)/τ ]t

)
dt

which in the oscillatory case U(x) = 1
2mω2x2 yields

Sosc(x, τ ; y, 0) = m
2τ (x− y)2 − 1

6mω2(x2 + xy + y2) · τ + · · ·
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—in precise agreement with the short-time expansion of the exact Sosc(x, t ; y, 0),
as it was described at (94.1).

Notice finally that in the case U(x) = 0 of a free particle the right side of
(110) assumes a form which at (91.5) was seen to be exactly correct even at
non-infinitesimal times t.

Expanded conception of quantum state: density matrices. Given a quantum
system S, we might know it to be in state |ψ)—as heretofore we have been
casually content to assume43—but more typically we know of S only that it is

in state |ψ1) with probability p1 ,
in state |ψ2) with probability p2 ,

...
...

in state |ψn) with probability pn ,
...

...

where the pn are (not “probability amplitudes” but) ordinary probabilities:
non-negative real numbers, subject to the constraint that

∑
pn = 1. Such

a state of affairs might have come about because

• We did our recent state-preparation with an A-meter of imperfect
resolution. If the sources of instrumental error are numerous and
independent, then (by the central limit theorem) we may expect those
errors to be normally distributed: a meter reading a0 means44 that
the system was projected into

state |a) with probability p(a) = 1
ε
√

2π
exp

{
− 1

2

[a−a0
ε

]2}
• We drew S from a thermalized population of systems. We then
expect S to be

in energy eigenstate |n) with probability pn = 1
Z e−En/kT

where the “partition function” Z(T ) ≡
∑

n e−En/kT .

In such cases we say that the system is in a “mixed” state, and otherwise (as
heretofore) in a “pure state.” The distinction is due to von Neumann ().45

43 But how would we actually know such a thing? Only by a recent act of
precise state-preparation (measurement). In textbook situations we are usually
engaging in innocent-seeming fantasy, playing “Suppose it were the case that
we knew; then . . . ” We tend—most of us, most of the time—to speak as though
it made sense to suppose that “S is in some quantum state, whether or not we
happen to know it.” But does hazard lurk in such naive realism?

44 See again (98).
45 See §9.1 in Jammer’s Conceptual Development of Quantum Mechanics

().
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We plan to spend the afternoon doing A-measurements on identically
prepared copies of S. The theoretical estimators of the expected statistical
properties of our data invoke “probability” in now two distinct ways:
• once in reference to the ineffable/irreducible randomness of the mirco world,

as written into the |ψ) concept, and
• once again in reference to the statistical properties of the state mixture, as

written into the distribution function pψ.
The expected mean of our data can be described as a “mean of means”

〈A〉 =
∑
ψ

pψ · (ψ|A |ψ)

=
∑
i

pi(ψi|A |ψi) in a more explicit notation

the expected second moment as an “averaged second moment”

〈A2〉 =
∑
ψ

pψ · (ψ|A2|ψ)

and so on. Enlarging upon an idea introduced at (13.2), we can write

〈A〉 =
∑
i

∑
n

pi(ψi|n)(n|A |ψi)

=
∑
n

∑
i

(n|A |ψi)pi(ψi|n)

= trAρρρ (111)

ρρρ ≡
∑
i

|ψi)pi(ψi| =
∑
i

piψψψi defines the “density matrix”

The “density matrix” is, in reality, not a “matrix” at all, but a linear
operator . . . if a linear operator with some very special properties (and which
admits, of course, of matrix representation, as every linear operator does).
Evidently ρρρ is the pi-weighted sum of projection operators ψψψi ≡ |ψi)(ψi|. The
operators ψψψi project onto the states imagined to be present in the mixture.46

The
∑

i is a “sum over states”—states which are under no constraint to be
orthogonal, or even linearly independent.

Relative to an orthonormal basis
{
|n)

}
the density matrix acquires the

representation (m|ρρρ |n). Interpreting trρρρ to mean
∑

n(n|ρρρ |n), we have

trρρρ =
∑
n

∑
i

(n|ψi)pi(ψi|n) =
∑
i

pi(ψi|ψi) =
∑
i

pi = 1 (112)

in all cases. Because 0 � pi � 1 (all i) one has

p2
i � pi with equality only if pi = 0 or pi = 1

46 The point of that “imagined to be,” and my use later of words like
“purported,” will be explained on the next page.
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and the latter equality can hold in (at most) only a single instance, forcing all
the other pi to vanish. So we have

∑
i

p2
i � 1 with equality if and only if ρρρ refers to a pure state

If the |ψi) happen, in particular, to be orthogonal then

ρρρ2 =
∑
i

∑
j

|ψi)pi(ψi|ψj)pj(ψj | =
∑
i

|ψi)p
2
i (ψi|

and we obtain
trρρρ2 =

∑
i

p2
i �

∑
i

pi = 1 = trρρρ (113)

with equality only for unmixed pure states.47

Notice that ρρρ =
∑
|ψk)pk(ψk| is insensitive to the relative phases of the

admixed states; i.e., that it is invariant under |ψk) −→ eiφk |ψk).

Let ρρρ =
∑
|ψi)pi(ψi| refer to some purported mixture of non-orthogonal

states. The operator ρρρ is manifestly self-adjoint—therefore assuredly possesses
real eigenvalues ρn and orthogonal eigenvectors |n), and can in terms of those
be described

∑
|n)ρn(n|. But in

ρρρ =
∑

i |ψi)pi(ψi| : p -weighted mixture of |ψ)-states
=

∑
n |n)ρn(n | : ρ -weighted mixture of |n)-states

we have displayed the same mixture in two distinct ways . . . and, in so doing,
denied “objective reality” to either. In this respect a “mixture of quantum
states” is a strange kind of mixture: it makes objective good sense to say that
“this box contains a mixture of apples and oranges,” but in quantum mechanics
we confront a situation in which that statement might continue “. . .but you
may, if you wish, consider it to contain a mixture of watermelons and kumquats,
or alternatively, a mixture of . . . ” It would be of interest to

Describe the population of equivalent
mixtures to which ρρρ evidently refers.

This is an issue to which I will return.

It is important not to confuse “mixture of states” with “superposition of
states.” We might write

|ψ) = 1√
2(1+r cos θ)

{
|ψ1) + |ψ2)

}
with (ψ1|ψ2) = rei θ (114.0)

47 Some authors allow themselves to write ρρρ2 � ρρρ to express this idea.
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to describe the pure state obtained by equi-weighted superposition of states
|ψ1) and |ψ2), and would then write

ρρρ = |ψ)(ψ|
= 1

2(1+r cos θ)

{
|ψ1)(ψ1|+ |ψ1)(ψ2|+ |ψ2)(ψ1|+ |ψ2)(ψ2|

}
(114.1)

to describe the associated density matrix. Equi-weighted mixture would, on the
other hand, give

ρρρ = 1
2

{
|ψ1)(ψ1|+ |ψ2)(ψ2|

}
(114.2)

Suppose |ψ1) and |ψ2) were known to be orthogonal ((ψ1|ψ2) = 0⇒ r = 0)
but that their relative phase were unknown; then (114.0) becomes

|ψ) = 1√
2

{
|ψ1) + eiα|ψ2)

}
and in place of (114.1) we obtain

ρρρ(α) = 1
2

{
|ψ1)(ψ1|+ |ψ1)(ψ2|e−iα + e+iα|ψ2)(ψ1|+ |ψ2)(ψ2|

}
If we express our phase-ignorance by “phase-averaging”

ρρρ ≡ 1
2π

∫ 2π

0

ρρρ(α) dα

then, pretty clearly, we recover precisely the result (114.2) of simple mixing.

We may conclude that ρρρ conveys a concept of “state” which is fairer to
the observational (and perhaps also to the philosophical) facts of quantum
experience than that conveyed by |ψ); that |ψ) is an abstraction which becomes
accidentally available only in degenerate cases48

|ψ) =
√
ρρρ : possible only if ρρρ2 = ρρρ

. . .but is none the less useful for that!

Classical /quantum master equations. I look briefly to this topic to consider
what it might have to contribute to our understanding of the concept of “state,”
and about the distinctive placement of quantum mechanics.

Abandon quantum mechanics for the moment. Think of a stochastic
classical system which at time t is in state n with probability pn, and by time

48 The following statement is intended to be more memorably picturesque
than literally meaningful.
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t+ τ can be expected to hop to state m with “transition probability” τWm←n.
We expect then to have

pm(t + τ) = pm(t) + τ
{∑

n

Wm←npn(t)− pm(t)
∑
n

Wn←m

}

giving
d
dtpm(t) =

∑
n

{
Wm←npn(t)−Wn←mpm(t)

}
(115)

Built into the design of this so-called “master equation” are the assumptions
that (i ) the “propensity to hop” depends on where the system is, not where it
was (the system is “memoryless”), and (ii ) the transition probabilities are time
-independent. These are defining characteristics of what are called “Markoff
processes.” Further conditions are sometimes assumed; for example, one might
in some applications have reason to assume

detailed balance : Wn←m = Wm←n

The Schrödinger equation can be written in a way

d
dt (m|ψ) =

∑
n

Wm←n(n|ψ) with Wm←n = 1
i� (m|H |n)

which shares many of the features of (115), though it speaks of the complex
hopping of “probability amplitudes.” If one looks to the implied motion of the
associated probabilities pm ≡ (ψ|m)(m|ψ) one obtains

d
dtpm = 1

i�

∑
n

{
(ψ|m)(m|H |n)(n|ψ)− (ψ|n)(n|H |m)(m|ψ)

}
(116)

which (except in the trivial case (m|H |n) = Enδmn) presents not probabilities
but amplitudes on its right side. Which brings us to a problem—first considered
by Pauli in —which I must be content merely to state:49 Under what
weakest possible and physically most natural conditions can it be arranged for
the amplitudes on the right side of (116) either to disappear or to assemble
themselves into pn’s . . . so that (116) becomes a statement about (irreversibily)
evolving probabilities? Solutions of the problem typically involve some form of
the random phase approximation (phase-averaging).

49 For discussion and good references see N. G. van Kampen, “Fundamental
problems in statistical mechanics of irreversible processes,” in E. G. D. Cohen,
Fundamental Problems in Statistical Mechanics() and Amnon Aharony,
“Microscopic Irreversibility, Unitarity & the H-theorem” in B. Gal-Or, Modern
Developments in Thermodynamics ().


